人教版八年级数学下册18.1.3三角形的中位线定理教案

文档属性

名称 人教版八年级数学下册18.1.3三角形的中位线定理教案
格式 zip
文件大小 75.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-04-08 15:40:11

图片预览

文档简介










平行四边形的判定
过程与方法:
经过探索三角形中位线定理的过程,理解它与平行四边形的内在联系,感悟几何学的推理方法.
情感态度与价值观:
培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.
重难点、关键
重点:理解并应用三角形中位线定理.
难点:理解三角形中位线定理的推导,感悟几何的思维方法.
关键:应用平行四边形的知识解决三角形中位线定理的证明,以“加倍法”来构建平行四边形.
教学准备
教师准备:直尺、圆规;补充本节课资料.
学生准备:预习本节课内容.
学法解析
1.认知起点:三角形、平行四边形有关知识.
2.知识线索:

3.学习方式:采用“讲授法”教学,学生以观察、分析、探讨的方式学习.
教学过程
一、回顾交流,归纳提升
【课堂温习】
教师提问:1.平行四边形的定义是什么?
2.平行四边形具有哪些性质?
3.平行四边形是如何判定的?
教师板书:画出一个平行四边形,如下图.(帮助理解)

学生活动:踊跃发言,相互讨论,归纳出平行四边形的性质与判定.
【课堂演练】(教师板书)
演练题:如图,平行四边形ABCD中,对角线AC、BD相交于O,E、F分别为BO、DO的中点.求证:AF∥CE.(请你用两种方法证明)

思路点拨:方法1:证明△AOF≌△COE,推出∠AFE=∠CEF,从而得证AF∥CE.方法2:连结AE,CF,去证明四边形AECF为平行四边形.
教师活动:组织学生完成“演练题”,巡视、关注“学困生”,对于思路较好的学生,请他们完成后再上台演示.教师注意纠正他们的书写.
学生活动:独立完成“演练题”,结合本道题,回顾和应用平行四边形性质,判定.
【师生共识】
构图:

【设计意图】采用先回顾(提问式)平行四边形性质、判定,再通过“演练题”进行实际应用,这样不空洞,且能调动积极性,有利于归纳、提升.
二、问题牵引,导入新知
例4 如图,点D,E分别是△ABC的边AB、AC的中点,求证DE∥BC,且DE=BC.

思路点拨:对于证明某条线段是某条线段的一半,常用的几何方法是“加倍法”,“折半法”,通过三角形全等把问题化归到平行四边形问题中去,然后再利用平行四边形的有关概念、性质来解决.本题可以延长DE到F,使EF=DE,通过连结AF、FC、CD把问题转化到ADCF中去,再根据平行四边形性质证明DBCF.
【活动方略】
教师活动:板书例4,分析并引导学生积极参与.教会学生如何添加辅助线,如何书写辅助线的添加法,然后板书出例4的证明.
学生活动:参与教师分析例4,学会“加倍法”的几何分析思路.
教师板书例4证法:(见课本P98)
教师问题:还有没有不同于课本的证法呢?
学生活动:相互讨论,踊跃发言,想出不同的证法.上讲台演示.
参考证法:
证法:延长DE到F使得EF=DE,连结FC,证△ADE≌△FEC,得到AD=FC(割补法),再利用BDCF证出DBCF,从而得到DF=BC,推出DE=BC,DE∥BC.
能用折半法吗?试一试!

教师活动:归纳学生的不同证法,然后应用例4的结论导入新知:(口述后让学生翻开课本画一画).
三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.
三角形中位线定理:三角形中位线平行于三角形的第三边,且等于第三边的一半.
教师提问:一个三角形有几条中位线?中位线和三角形的中线一样吗?
学生回答:有三条中位线,中位线是两边中点连线段;而中线是顶点和对边中点的连线段,因此它们不同.
【设计意图】采用引例导入,丰富学生的联想,又能从中学会几何不同的证明方法.
三、随堂练习,巩固深化
1.课本P99 “练习”1,2,3.
2.【探研时空】
如图,已知BE、CF分别为△ABC中∠B、∠C的平分线,AM⊥BE于M,AN⊥CF于N,求证:MN∥BC.
(提示:延长AN,AM,证AN=NR,AM=MQ.利用三角形中位线定理可证).

四、课堂总结,发展潜能
1.三角形中位线定理:三角形两边中点的连线是三角形的中位线;三角形的中位线平行于第三边,并且等于第三边的一半.三角形的中位线是三角形中一条重要的线段,三角形中位线定理在许多计算及证明中都要用到.
2.把握三角形中位线定理的应用时机:
(1)题目的条件中出现两个或两个以上的线段中点;
(2)题目的条件中虽然只有一个(线段的)中点,但过这点有直线平行于过中点所属线段端点的直线.
3.利用三角形中位线定理,添加辅助线的方法有:

五、布置作业,专题突破
1.课本P100~102 习题19.1 7,8,13,14
2.选用课时作业优化设计
六、课后反思





第四课时作业优化设计
【驻足“双基”】
1.已知△ABC中,AB:BC:CA=3:2:4且AB=9cm,D、E、F分别是AB、BC、AC的中点,则△DEF的周长是________.
2.已知△ABC中,D、E分别是AB、AC的中点,F为BC上一点,EF=BC,∠EFC=35°,则∠EDF=________.
3.顺次连结四边形各边中点所得到的四边形是___________.
4.如图,△ABC中,AD是∠BAC的平分线,CE⊥AD于E,M为BC的中点,AB=14cm,AC=10cm,求ME的长.

【提升“学力”】
5.已知△ABC中,AD⊥BC于D,E、F、G分别是AB、BD、AC的中点,EG=EF,AD+EF=9cm,求△ABC面积.





6.已知:在四边形ABCD中,AB∥CD,AB⊥AD,∠AEB=∠CED.F为BC的中点.求证:AF=DF=(BF+CE).


【聚焦“中考”】
7.如图,在ABCD中,E、F是对角线AC的两个三等分点,求证:四边形BFDE是平行四边形.


8.已知五边形ABCDE中,AC∥ED,交BE于点P,AD∥BC,交BE于点Q,BE∥CD,求证:△BCP≌△QDE.

答案:
1.13.5cm 2.72.5° 3.平行四边形 4.提示:延长CE交AB于T,2cm
5.提示:AD=2EF,EF=3,AD=6,EG=EF=,BC=9,S=27 5.27cm2
6.提示:延长BE、CD交于G,
如果只证AF=DF,那么过F作AD的垂线即可,
现在要使AF、DF与BE+CE建立起联系,就应进一步观察图形的特点了.
注意到∠AEB=∠CED,CD⊥AD,
因此可通过延长BE、CD交于G,过CE与BE之和成为线段BG,
接下来易见DF为△BCG的中位线,至此,DF与BE+CE的关系已清楚了,
同理可证AF=(BE+CE).
7.提示:连结DB
8.由AC∥ED,BE∥CD可以推出PCDE,因此可得PC=ED,
再由AC∥ED,BC∥AD得到角∠BPC=∠QED,∠CBP=∠DQE,
根据三角形全等条件可证得.