2020年中考数学二轮专题复习:四边形中常见辅助线的添加方法(原卷+解析版)

文档属性

名称 2020年中考数学二轮专题复习:四边形中常见辅助线的添加方法(原卷+解析版)
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2020-04-09 15:27:57

文档简介

2020中考数学几何专题突破

模块三:四边形中常见辅助线添加技巧


例1.(2019·安徽中考真题)如图,点E在?ABCD内部,AF∥BE,DF∥CE,

(1)求证:△BCE≌△ADF;
(2)设?ABCD的面积为S,四边形AEDF的面积为T,求的值
【答案】(1)证明略;(2)=2
【解析】
【分析】
(1)已知AD=BC,可以通过证明,来证明(ASA);
(2)连接EF,易证四边形ABEF,四边形CDFE为平行四边形,则,即可得=2.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴,

又,



同理可得:,
在和中,


(2)解:连接EF,


又,
∴四边形ABEF,四边形CDFE为平行四边形,
∴,
∴,
设点E到AB的距离为h1,到CD的距离为h2,线段AB到CD的距离为h,
则h= h1+ h2,
∴,
即=2.

【点睛】
本题考查了三角形全等的判定和性质、平行四边形的判定和性质以及相关面积计算,熟练掌握所学性质定理并能灵活运用进行推理计算是解题的关键.



【变式训练】

1. (2018?眉山)如图,在?ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有(  )

A.1个 B.2个 C.3个 D.4个
【分析】如图延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;
【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.

∵CD=2AD,DF=FC,
∴CF=CB,
∴∠CFB=∠CBF,
∵CD∥AB,
∴∠CFB=∠FBH,
∴∠CBF=∠FBH,
∴∠ABC=2∠ABF.故①正确,
∵DE∥CG,
∴∠D=∠FCG,
∵DF=FC,∠DFE=∠CFG,
∴△DFE≌△FCG,
∴FE=FG,
∵BE⊥AD,
∴∠AEB=90°,
∵AD∥BC,
∴∠AEB=∠EBG=90°,
∴BF=EF=FG,故②正确,
∵S△DFE=S△CFG,
∴S四边形DEBC=S△EBG=2S△BEF,故③正确,
∵AH=HB,DF=CF,AB=CD,
∴CF=BH,∵CF∥BH,
∴四边形BCFH是平行四边形,
∵CF=BC,
∴四边形BCFH是菱形,
∴∠BFC=∠BFH,
∵FE=FB,FH∥AD,BE⊥AD,
∴FH⊥BE,
∴∠BFH=∠EFH=∠DEF,
∴∠EFC=3∠DEF,故④正确,
故选:D.
2.(2019·江苏省中考真题)如图,四边形中,,点、分别在上,,过点、分别作的垂线,垂足为、.

(1)求证:;(2)连接,线段与是否互相平分?请说明理由.
【答案】(1)见解析;(2)线段与互相平分,见解析.
【解析】
【分析】
(1)由垂线的性质得出∠G=∠H=90°,AG∥CH,由平行线的性质和对顶角相等得出∠AEG=∠CFH,由AAS即可得出△AGE≌△CHF;
(2)连接AH、CG,由全等三角形的性质得出AG=CH,证出四边形AHCG是平行四边形,即可得出结论.
【详解】
(1)证明:,,
,,


,,

在和中,,

(2)线段与互相平分,理由如下:
连接、,如图所示:

由(1)得:,


∴四边形是平行四边形,
∴线段与互相平分.
【点睛】
本题考查了全等三角形的判定与性质、平行四边形的判定与性质、平行线的性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
3.(2018·湖北省中考真题)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.

【答案】证明见解析.
【解析】
分析:连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.
详证明:如图,连接BD,AE,

∵FB=CE,
∴BC=EF,
又∵AB∥ED,AC∥FD,
∴∠ABC=∠DEF,∠ACB=∠DFE,
在△ABC和△DEF中,

∴△ABC≌△DEF(ASA),
∴AB=DE,
又∵AB∥DE,
∴四边形ABDE是平行四边形,
∴AD与BE互相平分.
点睛:本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.






例1.(2019·北京中考真题)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.
(1)求证:AC⊥EF;
(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=,求AO的长.

【答案】(1)证明见解析;(2)AO=1。
【解析】
【分析】
(1)由菱形的性质得出AB=AD,AC平分∠BAD,再根据等腰三角形的三线合一即可;
(2)根据菱形的性质和已知条件得出四边形EBDG为平行四边形,得出∠G=∠ABD,再根据tanG=即可求出AO的长.
【详解】
(1)证明:∵四边形ABCD为菱形 ∴AB=AD,AC平分∠BAD
∵BE=DF, ∴ , ∴AE=AF
∴△AEF是等腰三角形, ∵AC平分∠BAD, ∴AC⊥EF
(2)解:如图2所示:

∵四边形ABCD为菱形,∴CG∥AB,BO=BD=2,∵EF∥BD
∴四边形EBDG为平行四边形,∴∠G=∠ABD,∴tan∠ABD=tan∠G=
∴tan∠ABD=,∴AO=1
【点睛】
本题考查了菱形的性质、平行线的判定与性质、解直角三角形,等腰三角形的性质等知识;熟练掌握菱形的性质是解题的关键.
【变式训练】

1. (2018?呼和浩特)如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.
(1)求证:△ABC≌△DEF;
(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.


【分析】(1)根据SAS即可证明.
(2)解直角三角形求出DF、OE、OF即可解决问题;
【解答】(1)证明:∵AB∥DE,
∴∠A=∠D,
∵AF=CD,
∴AF+FC=CD+FC,
即AC=DF,
∵AB=DE,
∴△ABC≌△DEF.
(2)如图,连接AB交AD于O.

在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,
∴DF==5,
∵四边形EFBC是菱形,
∴BE⊥CF,'∴EO==,
∴OF=OC==,
∴CF=,
∴AF=CD=DF﹣FC=5﹣=.
 
2.(2019?辽宁省鞍山市)如图,在菱形ABCD中,E,F分别是AD,DC的中点,若BD=4,EF=3,则菱形ABCD的周长为__.

【答案】.
【解析】
【分析】
连接AC,利用三角形的中位线定理求得AC的长,从而利用菱形的性质求得AO和BO的长,利用勾股定理求得边长后即可求得周长.
【详解】
解:如图,连接AC,

∵E,F分别是AD,DC的中点,EF=3,
∴AC=2EF=6,
∵四边形ABCD为矩形,BD=4,
∴AC⊥BD,AO=3,BO=2,
∴AB=,
∴周长为,
故答案为:.
【点睛】
考查了菱形的性质,解题的关键是了解菱形的对角线互相垂直平分,难度不大.
3.(2019?湖南省湘潭市)如图,将沿着边翻折,得到,且.

(1)判断四边形的形状,并说明理由;(2)若,,求四边形的面积.
【答案】(1)四边形是菱形,见解;(2)四边形的面积
【解析】
【分析】
(1)由折叠的性质得出,,,,由平行线的性质得出,得出,证出,,即可得出结论;
(2)连接交于,由菱形的性质得出,,,由勾股定理求出,得出,由菱形面积公式即可得出答案.
【详解】
解:(1)四边形是菱形;理由如下:
∵沿着边翻折,得到,
∴,,,,
∵,
∴,
∴,
∴,,
∴四边形是菱形;
(2)连接交于,如图所示:
∵四边形是菱形,
∴,,,
∴,
∴,
∴四边形的面积.

【点睛】
本题考查了翻折变换的性质、菱形的判定与性质、平行线的性质、勾股定理等知识;熟练掌握翻折变换的性质,证明四边形是菱形是解题的关键.
4.(2019?浙江省宁波市)如图,矩形的顶点,分别在菱形的边,上,顶点、在菱形的对角线上.

(1)求证:;
(2)若为中点,,求菱形的周长。
【答案】(1)证明见解析;(2)8.
【解析】
【分析】
(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;
(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.
【详解】
(1)∵四边形EFGH是矩形,
∴EH=FG,EH∥FG,
∴∠GFH=∠EHF,
∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,
∴∠BFG=∠DHE,
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠GBF=∠EDH,
∴△BGF≌△DEH(AAS),
∴BG=DE;
(2)连接EG,

∵四边形ABCD是菱形,
∴AD=BC,AD∥BC,
∵E为AD中点,
∴AE=ED,
∵BG=DE,
∴AE=BG,AE∥BG,
∴四边形ABGE是平行四边形,
∴AB=EG,
∵EG=FH=2,
∴AB=2,
∴菱形ABCD的周长=8.
【点睛】
本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.









例1.(2019·贵州省中考真题)如图,在中,,且,,点是斜边上的一个动点,过点分别作于点,于点,连接,则线段的最小值为________.

【答案】.
【解析】
【分析】
由勾股定理求出的长,再证明四边形是矩形,可得,根据垂线段最短和三角形面积即可解决问题.
【详解】
解:∵,且,,∴,
∵,,∴,
∴四边形是矩形.
如图,连接AD,则,

∴当时,的值最小,此时,的面积,
∴,∴的最小值为;
故答案为:.
【点睛】
本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,本题属于中考常考题型.

【变式训练】

1. (2018?达州)如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为   .

【分析】连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.
【解答】解:连接OB1,作B1H⊥OA于H,
由题意得,OA=6,AB=OC﹣2,
则tan∠BOA==,
∴∠BOA=30°,
∴∠OBA=60°,
由旋转的性质可知,∠B1OB=∠BOA=30°,
∴∴∠B1OH=60°,
在△AOB和△HB1O,

∴△AOB≌△HB1O,
∴B1H=OA=6,OH=AB=2,
∴点B1的坐标为(﹣2,6),
故答案为:(﹣2,6).



2.(2019·四川省中考真题)如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是( )

A.1 B. C.2 D.
【答案】B
【解析】
【分析】
连接,由矩形的性质得出,,,,由线段垂直平分线的性质得出,设,则,在中,由勾股定理得出方程,解方程即可.
【详解】
如图:连接,
∵四边形是矩形,
∴,,,,
∵,
∴,
设,则,
在中,由勾股定理得:,
解得:,
即;

故选B.
【点睛】
本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.

3.(2019·山东省中考真题)如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).

(1)求证:四边形EHFG是平行四边形;
(2)若∠α=90°,AB=9,AD=3,求AE的长.
【答案】(1)详见解析;(2)AE=5.
【解析】
【分析】
(1)由“ASA”可证△COF≌△AOE,可得EO=FO,且GO=HO,可证四边形EHFG是平行四边形;
(2)由题意可得EF垂直平分AC,可得AE=CE,由勾股定理可求AE的长.
【详解】
证明:(1)∵对角线AC的中点为O
∴AO=CO,且AG=CH
∴GO=HO
∵四边形ABCD是矩形
∴AD=BC,CD=AB,CD∥AB
∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA
∴△COF≌△AOE(ASA)
∴FO=EO,且GO=HO
∴四边形EHFG是平行四边形;
(2)如图,连接CE

∵∠α=90°,
∴EF⊥AC,且AO=CO
∴EF是AC的垂直平分线,
∴AE=CE,
在Rt△BCE中,CE2=BC2+BE2,
∴AE2=(9﹣AE)2+9,
∴AE=5
【点睛】
此题主要考查特殊平行四边形的证明与性质,解题的关键是熟知矩形的性质及勾股定理的运用.





例1.(2019·广西壮族自治区中考真题)如图,在正方形ABCD中,分别过顶点B,D作交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使,连接EG,FH.
(1)求证:四边形EHFG是平行四边形;
(2)已知:,,,求四边形EHFG的周长.

【答案】(1)见解析;(2)四边形EHFG的周长.
【解析】
【分析】
(1)根据正方形的性质证明,再根据平行四边形的判定即可求解;
(2)连接BD,交EF于O,根据正方形的性质求得,得到OF,OE,EF,FM,EM的长,过F作于M,交EH的延长线于M,根据三角函数求出,再根据勾股定理求出,即可求出四边形的周长.
【详解】
(1)∵四边形ABCD是正方形,
∴,,
∴,
∵,
∴,
∵,,
∴,
在和中,
∵,
∴,
∴,
∵,
∴,
即,
∵,
∴四边形EHFG是平行四边形;
(2)如图,连接BD,交EF于O,

∵四边形ABCD是正方形,
∴,
∴,
∵,
∴,
中,,
∴,
∴,
∵,,
∵,
∴,
∴,
∴,
∴,
∴,,
过F作于M,交EH的延长线于M,
∵,
∴,
∵,
∴,
∴,
∴,,
∴四边形EHFG的周长.
【点睛】
此题主要考查正方形的性质,解题的关键是熟知全等三角形的判定与性质,平行四边形的判定与性质及三角函数的应用.
【变式训练】

1.(2019·甘肃省中考真题)如图1,对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形的对角线、交于点,.试证明:;
(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.已知,,求的长.
【答案】(1) 四边形是垂美四边形,理由见解析;(2)证明见解析;(3) .
【解析】
【分析】
(1)根据垂直平分线的判定定理,可证直线是线段的垂直平分线,结合“垂美四边形”的定义证明即可;
(2)根据垂直的定义和勾股定理解答即可;
(3)连接、,先证明,得到∴,可证,即,从而四边形是垂美四边形,根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
【详解】
(1)四边形是垂美四边形.
证明:连接AC,BD,
∵,
∴点在线段的垂直平分线上,
∵,
∴点在线段的垂直平分线上,
∴直线是线段的垂直平分线,
∴,即四边形是垂美四边形;

(2)猜想结论:垂美四边形的两组对边的平方和相等.
如图2,已知四边形中,,垂足为,
求证:
证明:∵,
∴,
由勾股定理得,,

∴;
故答案为:.
(3)连接、,
∵,
∴,即,
在和中,,
∴,
∴,又,
∴,即,
∴四边形是垂美四边形,
由(2)得,,
∵,,
∴,,,
∴,
∴.

【点睛】
本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.
2.(2018·甘肃省中考真题)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.

【答案】见解析(2)
【解析】
【分析】
(1)根据三角形中位线定理和全等三角形的判定证明即可;
(2)利用正方形的性质和矩形的面积公式解答即可.
【详解】
(1)连接EF,∵点F,G,H分别是BC,BE,CE的中点,
∴FH∥BE,FH=BE,FH=BG,
∴∠CFH=∠CBG,
∵BF=CF,
∴△BGF≌△FHC,
(2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,

∵在△BEC中,点G,H分别是BE,CE的中点,
∴ 且GH∥BC,
∴EF⊥BC,
∵AD∥BC,AB⊥BC,
∴AB=EF=GH=a,
∴矩形ABCD的面积=
【点睛】
此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.
3.(2018·湖北省中考真题)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为   :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=   .

【答案】(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
【解析】
【分析】
(1)①由、结合可得四边形CEGF是矩形,再由即可得证;
②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
(2)连接CG,只需证∽即可得;
(3)证∽得,设,知,由得、、,由可得a的值.
【详解】
(1)①∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形;
②由①知四边形CEGF是正方形,
∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为;
(2)连接CG,

由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=、=,
∴=,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG=BE;
(3)∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC=a,
则由得,
∴AH=a,
则DH=AD﹣AH=a,CH==a,
∴由得,
解得:a=3,即BC=3,
故答案为3.
【点睛】
本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.

一. 和平行四边形有关的辅助线作法
1.利用一组对边平行且相等构造平行四边形
2.利用两组对边平行构造平行四边形
3.利用对角线互相平分构造平行四边形


二.和菱形有关的辅助线的作法
(1)作菱形的高;
(2)连结菱形的对角线.



三、 与矩形有辅助线作法
和矩形有关的题型一般有两种:
(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;
(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.

四.与正方形有关辅助线的作法
正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.




2020中考数学几何专题突破


模块三:四边形中常见辅助线添加技巧


例1.(2019·安徽中考真题)如图,点E在?ABCD内部,AF∥BE,DF∥CE,

(1)求证:△BCE≌△ADF;
(2)设?ABCD的面积为S,四边形AEDF的面积为T,求的值


【变式训练】

1. (2018?眉山)如图,在?ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有(  )

A.1个 B.2个 C.3个 D.4个

2.(2019·江苏省中考真题)如图,四边形中,,点、分别在上,,过点、分别作的垂线,垂足为、.

(1)求证:;(2)连接,线段与是否互相平分?请说明理由.









3.(2018·湖北省中考真题)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.








例1.(2019·北京中考真题)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.
(1)求证:AC⊥EF;
(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=,求AO的长.




【变式训练】

1. (2018?呼和浩特)如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.
(1)求证:△ABC≌△DEF;
(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.


2.(2019?辽宁省鞍山市)如图,在菱形ABCD中,E,F分别是AD,DC的中点,若BD=4,EF=3,则菱形ABCD的周长为__.

3.(2019?湖南省湘潭市)如图,将沿着边翻折,得到,且.

(1)判断四边形的形状,并说明理由;(2)若,,求四边形的面积.


4.(2019?浙江省宁波市)如图,矩形的顶点,分别在菱形的边,上,顶点、在菱形的对角线上.

(1)求证:;
(2)若为中点,,求菱形的周长。




例1.(2019·贵州省中考真题)如图,在中,,且,,点是斜边上的一个动点,过点分别作于点,于点,连接,则线段的最小值为________.


【变式训练】

1. (2018?达州)如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为   .










2.(2019·四川省中考真题)如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是( )

A.1 B. C.2 D.

3.(2019·山东省中考真题)如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).

(1)求证:四边形EHFG是平行四边形;
(2)若∠α=90°,AB=9,AD=3,求AE的长.













例1.(2019·广西壮族自治区中考真题)如图,在正方形ABCD中,分别过顶点B,D作交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使,连接EG,FH.
(1)求证:四边形EHFG是平行四边形;
(2)已知:,,,求四边形EHFG的周长.



【变式训练】

1.(2019·甘肃省中考真题)如图1,对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形的对角线、交于点,.试证明:;
(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.已知,,求的长.
2.(2018·甘肃省中考真题)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.























3.(2018·湖北省中考真题)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为   :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=   .



一. 和平行四边形有关的辅助线作法
1.利用一组对边平行且相等构造平行四边形
2.利用两组对边平行构造平行四边形
3.利用对角线互相平分构造平行四边形


二.和菱形有关的辅助线的作法
(1)作菱形的高;
(2)连结菱形的对角线.


三、 与矩形有辅助线作法
和矩形有关的题型一般有两种:
(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;
(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.

四.与正方形有关辅助线的作法
正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.




同课章节目录