2020中考常见最值问题总结归纳微专题九:函数最值—设X构造函数法(原卷+解析版)

文档属性

名称 2020中考常见最值问题总结归纳微专题九:函数最值—设X构造函数法(原卷+解析版)
格式 zip
文件大小 2.6MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2020-04-17 23:06:37

文档简介



微专题九:设X构造函数法


考法指导

把几何最值问题,通过设X,构造二次函数或一次函数,根据函数的性质求解最值。
目前构造函数法求最值,主要分为两大类别:
第一类为动点的几何最值问题
第二类为函数几何结合的求面积,线段和,差,积的最值问题。
【典例精析】
类型一 函数几何求面积线段最值
例题1.(2019·辽宁中考真题)如图,在平面直角坐标系中,的边在轴上,,以为顶点的抛物线经过点,交y轴于点,动点在对称轴上.
(1)求抛物线解析式;
(2)若点从点出发,沿方向以1个单位/秒的速度匀速运动到点停止,设运动时间为秒,过点作交于点,过点平行于轴的直线交抛物线于点,连接,当为何值时,的面积最大?最大值是多少?
(3)若点是平面内的任意一点,在轴上方是否存在点,使得以点为顶点的四边形是菱形,若存在,请直接写出符合条件的点坐标;若不存在,请说明理由.

【答案】(1);(2)当时,其最大值为1;(3)①;②点或或

【详解】
解:(1)将点的坐标代入二次函数表达式得:,解得:,
故抛物线的表达式为:,
则点;
(2)将点的坐标代入一次函数表达式并解得:
直线的表达式为:,
点,则点,设点,

∵,故有最大值,当时,其最大值为1;
(3)设点,点,
①当是菱形一条边时,
当点在轴下方时,
点向右平移3个单位、向下平移3个单位得到,
则点平移3个单位、向下平移3个单位得到,
则,,
而得:,
解得:,
故点;
当点在轴上方时,
同理可得:点;
②当是菱形一对角线时,
则中点即为中点,
则,,
而,即,
解得:,
故,,
故点;
综上,点或或.

【针对训练】


1.(2018·四川中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.

【答案】(1)抛物线的解析式为y=;(2)①存在t=或t=,使得△ADC与△PQA相似;②当t=时,△APQ与△CAQ的面积之和最大.
【详解】
解:(1)∵OA=1,OB=4,
∴A(1,0),B(﹣4,0),
设抛物线的解析式为y=a(x+4)(x﹣1),
∵点C(0,﹣)在抛物线上,
∴﹣,
解得a=.
∴抛物线的解析式为y=.
(2)存在t,使得△ADC与△PQA相似.
理由:①在Rt△AOC中,OA=1,OC=,
则tan∠ACO=,
∵tan∠OAD=,
∴∠OAD=∠ACO,
∵直线l的解析式为y=,
∴D(0,﹣),
∵点C(0,﹣),
∴CD=,
由AC2=OC2+OA2,得AC=,
在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t,
由∠PAQ=∠ACD,要使△ADC与△PQA相似,
只需或,
则有或,
解得t1=,t2=,
∵t1<2.5,t2<2.5,
∴存在t=或t=,使得△ADC与△PQA相似;
②存在t,使得△APQ与△CAQ的面积之和最大,
理由:作PF⊥AQ于点F,CN⊥AQ于N,

在△APF中,PF=AP?sin∠PAF=,
在△AOD中,由AD2=OD2+OA2,得AD=,
在△ADC中,由S△ADC= ,
∴CN=,
∴S△AQP+S△AQC= ,
∴当t=时,△APQ与△CAQ的面积之和最大.







2.(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.
(1)求二次函数的解析式;
(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;
(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.
【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为 ,E(,﹣).
【详解】
解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;
故二次函数表达式为:y=x2﹣4x+3;
(2)①当AB为平行四边形一条边时,如图1,

则AB=PE=2,
则点P坐标为(4,3),
当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,
故:点P(4,3)或(0,3);
②当AB是四边形的对角线时,如图2,

AB中点坐标为(2,0)
设点P的横坐标为m,点F的横坐标为2,其中点坐标为: ,
即:=2,解得:m=2,
故点P(2,﹣1);
故:点P(4,3)或(0,3)或(2,﹣1);
(3)直线BC的表达式为:y=﹣x+3,

设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),
S四边形AEBD=AB(yD﹣yE)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,
∵﹣1<0,故四边形AEBD面积有最大值,
当x=,其最大值为,此时点E(,﹣).
3.(2019·湖南中考真题)如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.

【答案】(1)抛物线的表达式为:;(2)有最大值,当时,其最大值为;(3)点或.
【详解】
解:(1)函数的表达式为:,将点D坐标代入上式并解得:,
故抛物线的表达式为:…①;
(2)设直线PD与y轴交于点G,设点,

将点P、D的坐标代入一次函数表达式:并解得:
直线PD的表达式为:,则,

∵,故有最大值,当时,其最大值为;
(3)∵,∴,
∵,故与相似时,分为两种情况:
①当时,
,,,
过点A作AH⊥BC与点H,

,解得:,
则,则,
则直线OQ的表达式为:…②,
联立①②并解得:(舍去负值),
故点
②时,

则直线OQ的表达式为:…③,
联立①③并解得:,
故点;
综上,点或.
4.(2019·海南中考真题)如图,已知抛物线经过,两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求的面积的最大值;
②该抛物线上是否存在点P,使得若存在,求出所有点P的坐标;若不存在,请说明理由.

【答案】(1);(2)①;②存在,或.
【详解】
解:(1)将点A、B坐标代入二次函数表达式得:,解得:,
故抛物线的表达式为:…①,
令,则或,
即点;
(2)①如图1,过点P作y轴的平行线交BC于点G,

将点B、C的坐标代入一次函数表达式并解得:
直线BC的表达式为:…②,
设点,则点,

,有最大值,当时,其最大值为;
②设直线BP与CD交于点H,

当点P在直线BC下方时,
,点H在BC的中垂线上,
线段BC的中点坐标为,
过该点与BC垂直的直线的k值为﹣1,
设BC中垂线的表达式为:,将点代入上式并解得:
直线BC中垂线的表达式为:…③,
同理直线CD的表达式为:…④,
联立③④并解得:,即点,
同理可得直线BH的表达式为:…⑤,
联立①⑤并解得:或(舍去),
故点;
当点在直线BC上方时,
,,
则直线BP′的表达式为:,将点B坐标代入上式并解得:,
即直线BP′的表达式为:…⑥,
联立①⑥并解得:或(舍去),
故点;
故点P的坐标为或.














5.(2018·内蒙古中考真题)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.
(1)请直接写出抛物线的解析式及顶点D的坐标;
(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.
②过点F作FH⊥BC于点H,求△PFH周长的最大值.

【答案】(1)y=x2﹣4x﹣5,顶点坐标为D(2,﹣9);(2)①存在点P(3,﹣2)使四边形PEDF为平行四边形;②△PFH周长的最大值为.
【详解】(1)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5,得
,解得:,
∴y=x2﹣4x﹣5=(x-2)2-9,
∴顶点坐标为D(2,﹣9);
(2)①存在,
设直线BC的函数解析式为y=kx+b(k≠0),
把B(5,0),C(0,﹣5)代入得,解得:,
∴BC解析式为y=x﹣5,
当x=m时,y=m﹣5,
∴P(m,m﹣5),
当x=2时,y=2﹣5=﹣3,
∴E(2.﹣3),
∵PF∥DE∥y轴,
∴点F的横坐标为m,
当x=m时,y=m2﹣4m﹣5,
∴F(m,m2﹣4m﹣5),
∴PF=(m﹣5)﹣(m2﹣4m﹣5)=﹣m2+5m,
∵E(2,﹣3),D(2,﹣9),
∴DE=﹣3﹣(﹣9)=6,
如图,连接DF,
∵PF∥DE,
∴当PF=DE时,四边形PEDF为平行四边形,
即﹣m2+5m=6,
解得m1=3,m2=2(舍去),
当m=3时,y=3﹣5=2,
此时P(3,﹣2),
∴存在点P(3,﹣2)使四边形PEDF为平行四边形;
②由题意,在Rt△BOC中,OB=OC=5,
∴BC=5,
∴C△BOC =10+5,
∵PF∥DE∥y轴,
∴∠FPE=∠DEC=∠OCB,
∵FH⊥BC,
∴∠FHP=∠BOC=90°,
∴△PFH∽△BCO,
∴,
即C△PFH=,
∵0<m<5,
∴当m=﹣时,△PFH周长的最大值为.

6.(2019·吉林中考真题)如图,抛物线与x轴相交于两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.
⑴求此抛物线的解析式;
⑵当点位于轴下方时,求面积的最大值;
⑶设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.
①求关于的函数解析式,并写出自变量的取值范围;
②当时,直接写出的面积.

【答案】(1);(2)8;(3)①(),(),();②6.
【详解】
解:(1)因为抛物线与轴交于点,
把代入,得

解得,
所以此抛物线的解析式为,
即;
(2)令,得,
解得,
所以,
所以;
解法一:
由(1)知,抛物线顶点坐标为,
由题意,当点位于抛物线顶点时,的面积有最大值,
最大值为;
解法二
由题意,得,
所以


所以当时,有最大值8;
(3)①当时,;
当时,;
当时,;
②当h=9时
若-m2+2m=9,此时△<0,m无解;
若m2-2m+1=9,则m=4,
∴P(4,5),
∵B(3,0),C(0,-3),
∴△BCP的面积=(4+1)×3=6;
7.(2017·贵州中考真题)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?

【答案】(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
【详解】
解:(1)∵直线y=2x+6经过点A(1,m),
∴m=2×1+6=8,
∴A(1,8),
∵反比例函数经过点A(1,8),
∴8=,
∴k=8,
∴反比例函数的解析式为y=.
(2)由题意,点M,N的坐标为M(,n),N(,n),
∵0<n<6,
∴<0,
∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
∴n=3时,△BMN的面积最大.

8.(2017·四川中考真题)如图1,抛物线:与:相交于点O、C,与分别交x轴于点B、A,且B为线段AO的中点.
(1)求的值;
(2)若OC⊥AC,求△OAC的面积;
(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:
①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;
②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)①P(,);②E(,),.
【详解】:
(1)在y=x2+ax中,当y=0时,x2+ax=0,x1=0,x2=﹣a,∴B(﹣a,0),在y=﹣x2+bx中,当y=0时,﹣x2+bx=0,x1=0,x2=b,∴A(0,b),∵B为OA的中点,∴b=﹣2a,∴;
(2)联立两抛物线解析式可得:,消去y整理可得,解得,,当时,,∴C(,),过C作CD⊥x轴于点D,如图1,∴D(,0),∵∠OCA=90°,∴△OCD∽△CAD,∴,∴CD2=AD?OD,即,∴a1=0(舍去),(舍去),,∴OA=-2a=,CD==1,∴;
(3)①抛物线,∴其对称轴,点A关于l2的对称点为O(0,0),C(,1),则P为直线OC与l2的交点,设OC的解析式为y=kx,∴1=k,得k=,∴OC的解析式为,当时,,∴P(,);
②设E(m,)(),则,而B(,0),C(,1),设直线BC的解析式为y=kx+b,由,解得:k=,b=-2,∴直线BC的解析式为,过点E作x轴的平行线交直线BC于点N,如图2,则,即x=
∴EN=

∴S四边形OBCE=S△OBE+S△EBC
,∵,∴当时,,当时,,∴E(,),.

9.(2017·四川中考真题)如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
【答案】(1);(2)S=,运动1秒使△PBQ的面积最大,最大面积是;(3)t=或t=.
【详解】
(1)∵点B坐标为(4,0),抛物线的对称轴方程为x=1,
∴A(﹣2,0),把点A(﹣2,0)、B(4,0)、点C(0,3),
分别代入(a≠0),得:,解得:,所以该抛物线的解析式为:;
(2)设运动时间为t秒,则AM=3t,BN=t,∴MB=6﹣3t.
由题意得,点C的坐标为(0,3).在Rt△BOC中,BC==5.
如图1,过点N作NH⊥AB于点H,
∴NH∥CO,
∴△BHN∽△BOC,
∴,即,
∴HN=t,
∴S△MBN=MB?HN=(6﹣3t)?t,
即S=,
当△PBQ存在时,0<t<2,
∴当t=1时,S△PBQ最大=.
答:运动1秒使△PBQ的面积最大,最大面积是;
(3)如图2,在Rt△OBC中,cos∠B=.
设运动时间为t秒,则AM=3t,BN=t,∴MB=6﹣3t.
①当∠MNB=90°时,cos∠B=,即,化简,得17t=24,解得t=;
②当∠BMN=90°时,cos∠B=,化简,得19t=30,解得t=.
综上所述:t=或t=时,△MBN为直角三角形.


10.(2017·四川中考真题)抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.
(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;
(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;
(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.
【答案】(1)y=4x2﹣16x+12;(2)P(,﹣3).(3)不存在.理由见解析.
【详解】
(1)∵tan∠ABC=4
∴可以假设B(m,0),则A(m﹣2,0),C(0,4m),
∴可以假设抛物线的解析式为y=4(x﹣m)(x﹣m+2),
把C(0,4m)代入y=4(x﹣m)(x﹣m+2),得m=3,
∴抛物线的解析式为y=4(x﹣3)(x﹣1),
∴y=4x2﹣16x+12,
(2)如图,设P(m,4m2﹣16m+12).作PH∥OC交BC于H.

∵B(3,0),C(0,12),
∴直线BC的解析式为y=﹣4x+12,
∴H(m,﹣4m+12),
∴S△PBC=S△PHC+S△PHB=(﹣4m+12﹣4m2+16m﹣12)?3=﹣6(m﹣)2+,
∵﹣6<0,
∴m=时,△PBC面积最大,
此时P(,﹣3).
(3)不存在.
理由:假设存在.由题意可知,
且1<﹣<2,
∴4<a<8,
∵a是整数,
∴a=5 或6或7,
当a=5时,代入不等式组,不等式组无解.
当a=6时,代入不等式组,不等式组无解.
当a=7时,代入不等式组,不等式组无解.
综上所述,不存在整数a、b,使得1<x1<2和1<x2<2同时成立.
11.(2017·天津中考真题)已知抛物线(是常数)经过点.
(1)求该抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点,关于原点的对称点为.
①当点落在该抛物线上时,求的值;
②当点落在第二象限内,取得最小值时,求的值.
【答案】(1),顶点的坐标为(1,-4);(2);(3).
【详解】
(1)∵抛物线经过点,
∴0=1-b-3,解得b=-2.
∴抛物线的解析式为,
∵,
∴顶点的坐标为(1,-4).
(2)①由点P(m,t)在抛物线上,有.
∵关于原点的对称点为,有P’(-m,-t).
∴,即

解得
②由题意知,P’(-m,-t)在第二象限,
∴-m<0,-t>0,即m>0,t<0.
又抛物线的顶点的坐标为(1,-4),得-4≤t<0.
过点P’作P’H⊥x轴,H为垂足,有H(-m,0).
又,,

当点A和H不重合时,在Rt△P’AH中,
当点A和H重合时,AH="0,",符合上式.
∴,即
记,则,
∴当t=-时,y’取得最小值.
把t=-代入,得
解得
由m>0,可知不符合题意
∴.
12.(2017·贵州中考真题)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.
(1)求过A、B、D三点的抛物线的解析式;
(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;
(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

【答案】(1);(2)S=﹣8t2+32t+32,当t=2时,S有最大值,且最大值为64;(3)H(,11),(, ).
【详解】
(1)∵A(8,0),D(﹣1,0),设过A、B、D三点的抛物线的解析式为y=a(x+1)(x﹣8),将B(0,4)代入得﹣8a=4,∴a=﹣,∴抛物线的解析式为,即 ;
(2)△ABC中,AB=AC,AO⊥BC,则OB=OC=4,∴C(0,﹣4).由A(8,0)、B(0,4),得:直线AB:y=﹣x+4;依题意,知:OE=2t,即 E(2t,0);∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;S=S△ABC+S△PAB=×8×8+×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;∴当t=2时,S有最大值,且最大值为64;
(3)存在,∵抛物线的对称轴为:x==,∵直线x=垂直x轴,∴∠HAB<90°,①当∠ABH=90°时,由A(8,0)、B(0,4),得:直线AB:y=﹣x+4,所以,直线BH可设为:y=2x+h,代入B(0,4),得:h=4,∴直线BH:y=2x+4,当x=时,y=11,∴H(,11),②当∠AHB=90°时,过B作BN⊥对称轴于N,则BN=,AG=,设对称轴交x轴于G,∵∠AHG=∠HBN=90°﹣∠BHN,∠BNH=∠AGH=90°,∴△AHG∽△BHN,∴,∴,∴HN(HN+4)=,∴4(HN)2+16HN﹣63=0,解得:HN=(负值舍去),∴H(, ),综上所述,H(,11),(, ).


13.(2017·四川中考真题)如图1,在平面直角坐标系中,,直线MN分别与x轴、y轴交于点M(6,0),N(0, ),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).
(1)等边△ABC的边长为_______;
(2)在运动过程中,当t=_______时,MN垂直平分AB;
(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA—AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.
①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;
②当点P在线段AC上运动时,设,求S与t的函数关系式,并求出S的最大值及此时点P的坐标.

【答案】(1)3;(2)3;(3)①t=1或或;②S= ,当t=时,△PEF的面积最大,最大值为,此时P(3, ).
【详解】
解:(1)∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,ON=,∴tan∠OMN= =,∴∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形,∴∠AOC=60°,∠NOA=30°,∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3.故答案为:3.
(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,所以t=3.故答案为:3.
(3)①如图1中,由题意BP=2t,BM=6﹣t,∵∠BEM=90°,∠BME=30°,∴BE=3﹣,AE=AB﹣BE=,∵∠BAC=60°,∴EF=AE=t,当点P在EF下方时,PE=BE﹣BP=3﹣t,由,解得0≤t<,∵△PEF与△MNO相似,∴=或=,∴=或=,解得t=1或t=.
当点P在EF上方时,PE=BE﹣BP=t-3,∵△PEF与△MNO相似,∴=或=,∴=或=,解得t=或3.∵0≤t≤,且t-3>0,即<t≤,∴t=.
综上所述,t=1或或.

②当P点在EF上方时,过P作PH⊥MN于H,如图2中,由题意,EF=t,FC=MC=3﹣t,∠PFH=30°,∴PF=PC﹣CF=(6﹣2t)﹣(3﹣t)=3﹣t,∴PH=PF=,∴S=?EF?PH=×t×= =,∵≤t≤3,∴当t=时,△PEF的面积最大,最大值为,此时P(3, ),当t=3时,点P与F重合,故P点在EF下方不成立.
故S= ,当t=时,△PEF的面积最大,最大值为,此时P(3, ).


14.(2017·四川中考真题)如图,抛物线与x轴交于A,B两点,B点坐标为(3,0).与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;
(3)点D为抛物线对称轴上一点.
①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;
②若△BCD是锐角三角形,求点D的纵坐标的取值范围.

【答案】(1);(2);(3)①D点坐标为(2,5)或(2,﹣1);②点D的纵坐标的取值范围为<y<5或﹣1<y<.
【详解】
解:(1)把B(3,0),C(0,3)代入得:,解得:,∴抛物线的解析式为;
(2)易得BC的解析式为y=﹣x+3,∵直线y=x﹣m与直线y=x平行,∴直线y=﹣x+3与直线y=x﹣m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=PG=,∴PE+EF=PE+PE+PF=2PE+PF===,当t=2时,PE+EF的最大值为;
(3)①如图2,抛物线的对称轴为直线x==2,设D(2,y),则BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得y=5,此时D点坐标为(2,5);
当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得y=﹣1,此时D点坐标为(2,﹣1);
综上所述:D点坐标为(2,5)或(2,﹣1).
②当△BCD是以BC为斜边的直角三角形时,DC2+DB2=BC2,即4+(y﹣3)2+1+y2=18,解得y1=,y2=,此时D点坐标为(2,)或(2,),所以△BCD是锐角三角形,点D的纵坐标的取值范围为<y<5或﹣1<y<.

















15.(2017·江苏中考真题)如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴上,点B坐标为(4,t)(t>0),二次函数(b<0)的图象经过点B,顶点为点D.
(1)当t=12时,顶点D到x轴的距离等于 ;
(2)点E是二次函数(b<0)的图象与x轴的一个公共点(点E与点O不重合),求OE?EA的最大值及取得最大值时的二次函数表达式;
(3)矩形OABC的对角线OB、AC交于点F,直线l平行于x轴,交二次函数(b<0)的图象于点M、N,连接DM、DN,当△DMN≌△FOC时,求t的值.

【答案】(1);(2)OE?AE的最大值为4,抛物线的表达式为;(3).
【详解】
解:(1)当t=12时,B(4,12).
将点B的坐标代入抛物线的解析式得:16+4b=12,解得:b=﹣1,∴抛物线的解析式,∴,∴D(,),∴顶点D与x轴的距离为.故答案为.
(2)将y=0代入抛物线的解析式得:x2+bx=0,解得x=0或x=﹣b,∵OA=4,∴AE=4﹣(﹣b)=4+b,∴OE?AE=﹣b(4+b)=﹣b2﹣4b=﹣(b+2)2+4,∴OE?AE的最大值为4,此时b的值为﹣2,∴抛物线的表达式为.
(3)过D作DG⊥MN,垂足为G,过点F作FH⊥CO,垂足为H.

∵△DMN≌△FOC,∴MN=CO=t,DG=FH=2.∵D(﹣,﹣),∴N(﹣,﹣ +2),即(,).把点N和坐标代入抛物线的解析式得: =()2+b?(),解得:t=±.∵t>0,∴t=.
16.(2017·四川中考真题)如图,在平面直角坐标系中,抛物线(a≠0)与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=8,OC=6.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时,点N从B出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN存在时,求运动多少秒使△MBN的面积最大,最大面积是多少?
(3)在(2)的条件下,△MBN面积最大时,在BC上方的抛物线上是否存在点P,使△BPC的面积是△MBN面积的9倍?若存在,求点P的坐标;若不存在,请说明理由.

【答案】(1);(2)运动秒使△MBN的面积最大,最大面积是;(3)P(3,)或(5,).
【详解】
解:(1)∵OA=2,OB=8,OC=6,∴根据函数图象得A(﹣2,0),B(8,0),C(0,6),根据题意得:,解得:,∴抛物线的解析式为;
(2)设运动时间为t秒,则AM=3t,BN=t,∴MB=10﹣3t.由题意得,点C的坐标为(0,6).在Rt△BOC中,BC==10.如图,过点N作NH⊥AB于点H,∴NH∥CO,∴△BHN∽△BOC,∴,即,∴HN=t,∴S△MBN=MB?HN=(10﹣3t)?t==﹣(t﹣)2+,当△MBN存在时,0<t<2,∴当t=时,S△MBN最大=.
答:运动秒使△MBN的面积最大,最大面积是;

(3)设直线BC的解析式为y=kx+c(k≠0).
把B(8,0),C(0,6)代入,得:,解得:,∴直线BC的解析式为 .
∵点P在抛物线上,∴设点P的坐标为(m,),如图,过点P作PE∥y轴,交BC于点E,则E点的坐标为(m,).

∴EP=﹣()=,当△MBN的面积最大时,S△PBC=9 S△MBN=,∴S△PBC=S△CEP+S△BEP=EP?m+?EP?(8﹣m)=×8EP=4×()=,即=.解得m1=3,m2=5,∴P(3,)或(5,).
17.(2017·四川中考真题)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.
(1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.

【答案】(1)抛物线解析式为;(2)点D的坐标为(3,2)或(-5,-18);(3)当t=时,有S1-S2有最大值,最大值为.
【详解】
解:(1)由题意可得,解得,
∴抛物线解析式为;
(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,

∵A、B关于对称轴对称,C、D关于对称轴对称,
∴四边形ABDC为等腰梯形,
∴∠CAO=∠DBA,即点D满足条件,
∴D(3,2);
当点D在x轴下方时,
∵∠DBA=∠CAO,
∴BD∥AC,
∵C(0,2),
∴可设直线AC解析式为y=kx+2,把A(-1,0)代入可求得k=2,
∴直线AC解析式为y=2x+2,
∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=-8,
∴直线BD解析式为y=2x-8,
联立直线BD和抛物线解析式可得解得或,
∴D(-5,-18);
综上可知满足条件的点D的坐标为(3,2)或(-5,-18);
(3)设∵AB=5,OC=2,
∴S△PAB=,



,且,

∴当t=时,有S1-S2有最大值,最大值为.












【典例精析】
类型二 动点几何最值

例题1.(2019·江苏中考真题)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为t(s),的面积为S(cm?),S与t的函数关系如图②所示:
(1)直接写出动点M的运动速度为 ,BC的长度为 ;
(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点D出发,在矩形边上沿着的方向匀速运动,设动点N的运动速度为.已知两动点M、N经过时间在线段BC上相遇(不包含点C),动点M、N相遇后立即停止运动,记此时的面积为.
①求动点N运动速度的取值范围;
②试探究是否存在最大值.若存在,求出的最大值并确定运动速度时间的值;若不存在,请说明理由.

【答案】(1)2,10;(2)①;②当时,取最大值.
【详解】
(1)5÷2.5=2;(7.5-2.5)×2=10
(2)①解:在C点相遇得到方程
在B点相遇得到方程

解得
∵在边BC上相遇,且不包含C点

②如下图

=15

过M点做MH⊥AC,则



=
=
因为,所以当时,取最大值.

【针对训练】
1.(2017·浙江中考真题)在一空旷场地上设计一落地为矩形的小屋,.拴住小狗的长的绳子一端固定在点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为.
(1)如图,若,则 .
(2)如图,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边的小屋,其它条件不变.则在的变化过程中,当取得最小值时,边长的长为 .
【答案】.
【详解】
(1)在B点处是以点B为圆心,10为半径的个圆;在A处是以A为圆心,4为半径的个圆;在C处是以C为圆心,6为半径的个圆;所以S=;(2)设BC=x,则AB=10-x,=(-10x+250),当x=时,S最小,即BC=.


2.(2019·内蒙古中考模拟)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为______s时,四边形EFGH的面积最小,其最小值是________cm2.

【答案】 3 18
【详解】
设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,
根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,
∴当t=3时,四边形EFGH的面积取最小值,最小值为18.

3.(2019·江苏初三月考)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
(1)填空:  ;
(2)如图1,连接,作,垂足为,求的长度;
(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?

【答案】(1)60;(2);(3)x时,y有最大值,最大值.
【详解】
(1)由旋转性质可知:OB=OC,∠BOC=60°,
∴△OBC是等边三角形,
∴∠OBC=60°.
故答案为60.
(2)如图1中.

∵OB=4,∠ABO=30°,
∴OAOB=2,ABOA=2,
∴S△AOC?OA?AB2×2.
∵△BOC是等边三角形,
∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,
∴AC,
∴OP.
(3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.

则NE=ON?sin60°x,
∴S△OMN?OM?NE1.5xx,
∴yx2,
∴x时,y有最大值,最大值.
②当x≤4时,M在BC上运动,N在OB上运动.

作MH⊥OB于H.
则BM=8﹣1.5x,MH=BM?sin60°(8﹣1.5x),
∴yON×MHx2+2x.
当x时,y取最大值,y,
③当4<x≤4.8时,M、N都在BC上运动,

作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,
∴y?MN?OG=12x,
当x=4时,y有最大值,最大值=2.
综上所述:y有最大值,最大值为.

4.(2019·宁夏中考真题)如图,在中,,,,点分别是边上的动点(点不与重合),且,过点作的平行线,交于点,连接,设为.
(1)试说明不论为何值时,总有∽;
(2)是否存在一点,使得四边形为平行四边形,试说明理由;
(3)当为何值时,四边形的面积最大,并求出最大值.

【答案】(1)见解析;(2)当时,四边形为平行四边形;(3)当时,四边形的面积最大,最大值为.
【详解】
解:(1)∵,
∴,
∴,又,
∴∽;
(2)当时,四边形为平行四边形,
∵,,
∴四边形为平行四边形;
(3)∵,
∴,
∵∽,
∴,即,
解得,,
∵,
∴,即,
解得,,
则四边形的面积,
∴当时,四边形的面积最大,最大值为.
5.(2019·山东中考真题)如图,在正方形中,,为对角线上一动点,连接,,过点作,交直线于点.点从点出发,沿着方向以每秒的速度运动,当点与点重合时,运动停止.设的面积为,点的运动时间为秒.

(1)求证:;
(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;
(3)求面积的最大值.
【答案】(1)证明见解析;(2) ;(3)面积的最大值是50.
【详解】
(1)证明:过作,交于,交于,

∵四边形是正方形,
∴,,
∴,,
∴,
∵,
∴,
∴,
∵,,
∴,
∴,
∴,
∵四边形是正方形,
∴,,
∵,
∴,
∴;
(2)解:在Rt△BCD中,由勾股定理得:,
∴0≤x≤5,
由题意得:BE=2x,
∴BN=EN=x,
由(1)知:AE=EF=EC,
分两种情况:
①当0≤x≤时,如图1,
∵AB=MN=10,
∴ME=FN=10-x,
∴BF=FN-BN=10-x-x=10-2x,
∴y;
②当<x≤5时,如图2,过E作EN⊥BC于N,
∴EN=BN=x,
∴FN=CN=10-x,
∴BF=BC-2CN=10-2(10-x)=2x-10,
∴y=;

综上,y与x之间关系的函数表达式为: ;
(3)解:①当0≤x≤时,如图1,

∵-2<0,
∴当x=时,y有最大值是;
②当<x≤5时,如图2,

∴y=2x2-5x=2(x-)2-,
∵2>0,
∴当x>时,y随x的增大而增大
∴当x=5时,y有最大值是50;
综上,△BEF面积的最大值是50.

6.(2017·黑龙江中考真题)如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:
(1)求证:△APR,△BPQ,△CQR的面积相等;
(2)求△PQR面积的最小值;
(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.

【答案】(1)证明见解析;(2)6;(3)t=1或.
【详解】
解:(1)如图,在Rt△ABC中,AB=6,AC=8,根据勾股定理得,BC=10,sin∠B===,sin∠C=,过点Q作QE⊥AB于E,在Rt△BQE中,BQ=5t,∴sin∠B==,∴QE=4t,过点Q作QD⊥AC于D,在Rt△CDQ中,CQ=BC﹣BQ=10﹣5t,∴QD=CQ?sin∠C=(10﹣5t)=3(2﹣t),由运动知,AP=3t,CR=4t,∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),∴S△APR=AP?AR=×3t×4(2﹣t)=6t(2﹣t),S△BPQ=BP?QE=×3(2﹣t)×4t=6t(2﹣t),S△CQR=CR?QD=×4t×3(2﹣t)=6t(2﹣t),∴S△APR=S△BPQ=S△CQR,∴△APR,△BPQ,△CQR的面积相等;

(2)由(1)知,S△APR=S△BPQ=S△CQR=6t(2﹣t),∵AB=6,AC=8,∴S△PQR=S△ABC﹣(S△APR+S△BPQ+S△CQR)
=×6×8﹣3×6t(2﹣t)=24﹣18(2t﹣t2)=18(t﹣1)2+6,∵0≤t≤2,∴当t=1时,S△PQR最小=6;
(3)存在,由点P,Q,R的运动速度知,运动1秒时,点P,Q,R分别在AB,BC,AC的中点,此时,四边形APQR是矩形,即:t=1秒时,∠PQR=90°,由(1)知,QE=4t,QD=3(2﹣t),AP=3t,CR=4t,AR=4(2﹣t),∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),过点Q作QD⊥AC于D,作QE⊥AB于E,∵∠A=90°,∴四边形APQD是矩形,∴AE=DQ=3(2﹣t),AD=QE=4t,∴DR=|AD﹣AR|=|4t﹣4(2﹣t)|=4|2t﹣2|,PE=|AP﹣AE|=|3t﹣3(2﹣t)|=3|2t﹣2|.∵∠DQE=90°,∠PQR=90°,∴∠DQR=∠EQP,∴tan∠DQR=tan∠EQP,在Rt△DQR中,tan∠DQR==,在Rt△EQP中,tan∠EQP==,∴=,∴16t=9(2﹣t),∴t=.即:t=1或秒时,∠PQR=90°.




7.(2017·江苏中考真题)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
(1)若AP=1,则AE= ;
(2)①求证:点O一定在△APE的外接圆上;
②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.

【答案】(1);(2)①证明见解析;②;(3).
【详解】
(1)∵四边形ABCD、四边形PEFG是正方形,
∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
∴∠AEP=∠PBC,∴△APE∽△BCP,
∴,即,解得:AE=,
故答案为:;
(2)①∵PF⊥EG,∴∠EOF=90°,
∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,
∴点O一定在△APE的外接圆上;
②连接OA、AC,如图1所示:
∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,
∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,
∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,
即点O经过的路径长为;
(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:
则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,
设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,
∴,即,解得:AE= =,
∴x=2时,AE的最大值为1,此时MN的值最大=×1=,
即△APE的圆心到AB边的距离的最大值为.




微专题九:设X构造函数法


考法指导

把几何最值问题,通过设X,构造二次函数或一次函数,根据函数的性质求解最值。
目前构造函数法求最值,主要分为两大类别:
第一类为动点的几何最值问题
第二类为函数几何结合的求面积,线段和,差,积的最值问题。
【典例精析】
类型一 函数几何求面积线段最值
例题1.(2019·辽宁中考真题)如图,在平面直角坐标系中,的边在轴上,,以为顶点的抛物线经过点,交y轴于点,动点在对称轴上.
(1)求抛物线解析式;
(2)若点从点出发,沿方向以1个单位/秒的速度匀速运动到点停止,设运动时间为秒,过点作交于点,过点平行于轴的直线交抛物线于点,连接,当为何值时,的面积最大?最大值是多少?
(3)若点是平面内的任意一点,在轴上方是否存在点,使得以点为顶点的四边形是菱形,若存在,请直接写出符合条件的点坐标;若不存在,请说明理由.

【答案】(1);(2)当时,其最大值为1;(3)①;②点或或

【详解】
解:(1)将点的坐标代入二次函数表达式得:,解得:,
故抛物线的表达式为:,
则点;
(2)将点的坐标代入一次函数表达式并解得:
直线的表达式为:,
点,则点,设点,

∵,故有最大值,当时,其最大值为1;
(3)设点,点,
①当是菱形一条边时,
当点在轴下方时,
点向右平移3个单位、向下平移3个单位得到,
则点平移3个单位、向下平移3个单位得到,
则,,
而得:,
解得:,
故点;
当点在轴上方时,
同理可得:点;
②当是菱形一对角线时,
则中点即为中点,
则,,
而,即,
解得:,
故,,
故点;
综上,点或或.

【针对训练】


1.(2018·四川中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.




2.(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.
(1)求二次函数的解析式;
(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;
(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.



3.(2019·湖南中考真题)如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.







4.(2019·海南中考真题)如图,已知抛物线经过,两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求的面积的最大值;
②该抛物线上是否存在点P,使得若存在,求出所有点P的坐标;若不存在,请说明理由.

















5.(2018·内蒙古中考真题)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.
(1)请直接写出抛物线的解析式及顶点D的坐标;
(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.
②过点F作FH⊥BC于点H,求△PFH周长的最大值.














6.(2019·吉林中考真题)如图,抛物线与x轴相交于两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.
⑴求此抛物线的解析式;
⑵当点位于轴下方时,求面积的最大值;
⑶设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.
①求关于的函数解析式,并写出自变量的取值范围;
②当时,直接写出的面积.














7.(2017·贵州中考真题)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?













8.(2017·四川中考真题)如图1,抛物线:与:相交于点O、C,与分别交x轴于点B、A,且B为线段AO的中点.
(1)求的值;
(2)若OC⊥AC,求△OAC的面积;
(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:
①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;
②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.




















9.(2017·四川中考真题)如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.



















10.(2017·四川中考真题)抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.
(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;
(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;
(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.





11.(2017·天津中考真题)已知抛物线(是常数)经过点.
(1)求该抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点,关于原点的对称点为.
①当点落在该抛物线上时,求的值;
②当点落在第二象限内,取得最小值时,求的值.













12.(2017·贵州中考真题)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.
(1)求过A、B、D三点的抛物线的解析式;
(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;
(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.


















13.(2017·四川中考真题)如图1,在平面直角坐标系中,,直线MN分别与x轴、y轴交于点M(6,0),N(0, ),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).
(1)等边△ABC的边长为_______;
(2)在运动过程中,当t=_______时,MN垂直平分AB;
(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA—AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.
①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;
②当点P在线段AC上运动时,设,求S与t的函数关系式,并求出S的最大值及此时点P的坐标.












14.(2017·四川中考真题)如图,抛物线与x轴交于A,B两点,B点坐标为(3,0).与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;
(3)点D为抛物线对称轴上一点.
①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;
②若△BCD是锐角三角形,求点D的纵坐标的取值范围.

























15.(2017·江苏中考真题)如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴上,点B坐标为(4,t)(t>0),二次函数(b<0)的图象经过点B,顶点为点D.
(1)当t=12时,顶点D到x轴的距离等于 ;
(2)点E是二次函数(b<0)的图象与x轴的一个公共点(点E与点O不重合),求OE?EA的最大值及取得最大值时的二次函数表达式;
(3)矩形OABC的对角线OB、AC交于点F,直线l平行于x轴,交二次函数(b<0)的图象于点M、N,连接DM、DN,当△DMN≌△FOC时,求t的值.














16.(2017·四川中考真题)如图,在平面直角坐标系中,抛物线(a≠0)与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=8,OC=6.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时,点N从B出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN存在时,求运动多少秒使△MBN的面积最大,最大面积是多少?
(3)在(2)的条件下,△MBN面积最大时,在BC上方的抛物线上是否存在点P,使△BPC的面积是△MBN面积的9倍?若存在,求点P的坐标;若不存在,请说明理由.













17.(2017·四川中考真题)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.
(1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.


















【典例精析】
类型二 动点几何最值

例题1.(2019·江苏中考真题)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为t(s),的面积为S(cm?),S与t的函数关系如图②所示:
(1)直接写出动点M的运动速度为 ,BC的长度为 ;
(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点D出发,在矩形边上沿着的方向匀速运动,设动点N的运动速度为.已知两动点M、N经过时间在线段BC上相遇(不包含点C),动点M、N相遇后立即停止运动,记此时的面积为.
①求动点N运动速度的取值范围;
②试探究是否存在最大值.若存在,求出的最大值并确定运动速度时间的值;若不存在,请说明理由.

【答案】(1)2,10;(2)①;②当时,取最大值.
【详解】
(1)5÷2.5=2;(7.5-2.5)×2=10
(2)①解:在C点相遇得到方程
在B点相遇得到方程

解得
∵在边BC上相遇,且不包含C点

②如下图

=15

过M点做MH⊥AC,则



=
=
因为,所以当时,取最大值.

【针对训练】
1.(2017·浙江中考真题)在一空旷场地上设计一落地为矩形的小屋,.拴住小狗的长的绳子一端固定在点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为.
(1)如图,若,则 .
(2)如图,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边的小屋,其它条件不变.则在的变化过程中,当取得最小值时,边长的长为 .





2.(2019·内蒙古中考模拟)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为______s时,四边形EFGH的面积最小,其最小值是________cm2.








3.(2019·江苏初三月考)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
(1)填空:  ;
(2)如图1,连接,作,垂足为,求的长度;
(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?





4.(2019·宁夏中考真题)如图,在中,,,,点分别是边上的动点(点不与重合),且,过点作的平行线,交于点,连接,设为.
(1)试说明不论为何值时,总有∽;
(2)是否存在一点,使得四边形为平行四边形,试说明理由;
(3)当为何值时,四边形的面积最大,并求出最大值.


5.(2019·山东中考真题)如图,在正方形中,,为对角线上一动点,连接,,过点作,交直线于点.点从点出发,沿着方向以每秒的速度运动,当点与点重合时,运动停止.设的面积为,点的运动时间为秒.

(1)求证:;
(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;
(3)求面积的最大值.


















6.(2017·黑龙江中考真题)如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:
(1)求证:△APR,△BPQ,△CQR的面积相等;
(2)求△PQR面积的最小值;
(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.

















7.(2017·江苏中考真题)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
(1)若AP=1,则AE= ;
(2)①求证:点O一定在△APE的外接圆上;
②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.


同课章节目录