微专题二:单线段最值+双动点型
考法指导
解决双动点问题的核心时,常借助六种方法把双动点问题转化为上述单动点型问题。
利用等量代换实现转化
利用线段和差实现转化
利用勾股定理实现转化
利用三角形图形之间关联及边角关系(构造全等,相似,中位线及直角三角形斜边上的中线)实现转化
利用添加“隐圆”实现转化
利用轴对称实现转化
技法1借助等量代换实现转化
【典例精析】
例题1.(2019·河北省)如图,中,,,,点D是AC上的任意一点,过点D作于点E,于点F,连接EF,则EF的最小值是_________.
【答案】2.4
【详解】
解:连接BD
四边形BEDF是矩形
当时,BD取最小值,
在中,,,根据勾股定理得AC=5,
所以EF的最小值等于BD的最小值为2.4.
故答案为2.4
【针对训练】
1.(2018·周南实验中学初二期中)已知:如图,已知直线 AB 的函数解析式为 y 2x 8 ,与 x 轴交于点 A ,与 y轴交于点 B .
(1)求 A 、 B 两点的坐标;
(2)若点 P m, n为线段 AB 上的一个动点(与 A 、B 不重合),作 PE x 轴于 E , PF y轴于点 F ,连接 EF ,问:
①若PEF 的面积为 S ,求 S 关于 m 的函数关系式,并求出当 S 3时 P 点的坐标;
②是否存在点 P ,使 EF 的值最小?若存在,求出 EF 的最小值;若不存在,请说明理由.
【答案】(1)A(4,0),B(0,8);(2)①;②存在;EF的最小值=OP=.
【详解】
解:(1)令x=0,则y=8,
∴B(0,8),
令y=0,则-2x+8=0,
∴x=4,
∴A(4,0),
(2)①∵点P(m,n)为线段AB上的一个动点,
∴-2m+8=n,
∵A(4,0),
∴OA=4,
∴0<m<4
∵PF=m,PE=-2m+8
∴=PF×PE=×m×(-2m+8)=,(0<m<4);
②存在,如图
理由:∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,
∴四边形OEPF是矩形,
∴EF=OP,
当OP⊥AB时,此时EF最小,
∵A(4,0),B(0,8),
∴AB=
∵S△AOB=×OA×OB=×AB×OP,
,
∴EF的最小值=OP=.
2.(2020·晋江市三民中学初三月考)如图,点A在抛物线上,直线⊥y轴于点M,AC⊥于点C,以AC为对角线作矩形ABCD,若点M的坐标为(0,6),则BD的取值范围是_______.
【答案】
【详解】
∵=-(x+1)(x-3),
∴顶点坐标为(1,4),与x轴的交点坐标为(-1,0)(3,0),
∵0≤x≤3,
∴当A与顶点重合时,AC最短,
当x=1时,y=-1+2+3=4,
∴AC=6-4=2;
当A在轴上时,AC最长,此时AC=6,
∴2≤AC≤6,
∵四边形ABCD是矩形,
∴AC=BD,
∴BD的取值范围是.
故答案为:
3.(2017·四川中考在真题)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是( )
A.3 B.4 C.5 D.6
【答案】C
【详解】
过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,此时△PMF周长最小值,
∵F(0,2)、M( ,3),
∴ME=3,FM==2,
∴△PMF周长的最小值=ME+FM=3+2=5.
故选C.
4.(2017·辽宁中考真题)已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.
(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为 ,说明理由;
(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;
(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
【答案】(1)△FGH是等边三角形;(2);(3)△FGH的周长最大值为(a+b),最小值为(a﹣b).
【详解】
解:(1)结论:△FGH是等边三角形.理由如下:
如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.
∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=BD,GF∥BD,∵DF=EF,DH=HC,∴FH=EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°
∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.
(2)如图2中,连接AF、EC.
易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF==,在Rt△ABF中,BF= =,∴BD=CE=BF﹣DF=,∴FH=EC=.
(3)存在.理由如下.
由(1)可知,△GFH是等边三角形,GF=BD,∴△GFH的周长=3GF=BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为(a+b),最小值为(a﹣b).
技法2借助隐圆实现转化
【典例精析】
例题1.(2019·黄陂区)在△ABC中,AB=5,AC=8,∠BAC=60°,点D是BC上一动点,DE⊥AB于E,DF⊥AC于F,线段EF的最小值为_____.
【答案】
【详解】
如图,过点B作BG⊥AC,过点A作AH⊥BC,连接AD,
∵AB=5,∠BAC=60°,BG⊥AC,
∴AG=,BG=AG=,
∵AC=8,AG=,
∴GC=,
∴BC===7,
∵S△ABC=?BC?AH=?AC?BG,
∴AH=,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
∴∠AED+∠AFD=180°,
∴点A,点E,点D,点F四点在以AD为直径的圆上,设圆心为O,连接OE,OF,
∴∠EOF=120°,
∴EF=2?OE?cos30°,
∴当⊙O的直径最小时,EF的长最小,
∴AD与AH重合时,EF最小,
∴EF最小值为
【针对训练】
1.(2019·湖北省初三月考)如图,等腰三角形△ABC中,∠BAC=120°,AB=3.
(1)求BC的长.
(2)如图,点D在CA的延长线上,DE⊥AB于E,DF⊥BC于F,连EF.求EF的最小值.
【答案】(1)BC=;(2)EF的最小值为
【详解】
(1)过点A作AM⊥BC于点M,
∵等腰三角形△ABC中,∠BAC=120°,AB=3,
∴∠B=(180°-120°)÷2=30°,BM=CM,
∴BM=3÷2×=,
∴BC=2 BM=2×=3;
(2)连接BD,取BD的中点O,连接OE,OF,
∵DE⊥AB于E,DF⊥BC于F,
∴在Rt?BDF与Rt?BDE中,OB=OD=OE=OF=BD,
∴B,D,E,F四点共圆,
∴∠EOF=2∠EBF=2×30°=60°,
∴?OEF是等边三角形,
∴EF=OF=BD,
∵∠C=∠EBF =30°,
∴当BD⊥CD时,BD=BC=,此时,BD的值最小,
∴EF的最小值=BD =×=.
2.(2018·武汉市初二期中)在平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0),A(﹣x,0),C(0,y),且x、y满足.
(1)矩形的顶点B的坐标是 .
(2)若D是AB中点,沿DO折叠矩形OABC,使A点落在点E处,折痕为DO,连BE并延长BE交y轴于Q点.
①求证:四边形DBOQ是平行四边形.
②求△OEQ面积.
(3)如图2,在(2)的条件下,若R在线段AB上,AR=4,P是AB左侧一动点,且∠RPA=135°,求QP的最大值是多少?
【答案】(1)点B(﹣4,6);(2)①见解析;②S△EOQ=;(3)PQ的最大值为2+
【详解】
解:(1)∵x﹣4≥0,4﹣x≥0
∴x=4,
∴y=6
∴点A(﹣4,0),点C(0,6)
∴点B(﹣4,6)
故答案为(﹣4,6)
(2)①∵D是AB中点,
∴AD=BD
∵折叠
∴AD=DE,∠ADO=∠ODE
∴∠DBE=∠DEB
∵∠ADE=∠DBE+∠DEB
∴∠ADO+∠ODE=∠DBE+∠DEB
∴∠ADO=∠DBE
∴OD∥BQ,且AB∥OC
∴四边形BDOQ是平行四边形,
②如图,过点D作DF⊥BQ于点F,
∵AD=3,AO=4
∴DO==5
∵四边形BDOQ是平行四边形,
∴BD=OQ=3,BQ=DO=5,
∴CQ=CO﹣OQ=3
∵AB∥CO
∴∠ABQ=∠BQC,且∠BFD=∠BCQ=90°
∴△BFD∽△QCB
∴
∵DE=BD,DF⊥BQ
,
∴S?BDOQ=12
∴S△EOQ=S?BDOQ﹣S△DEO﹣S△BDE=
(3)如图,连接RO,以RO为直径作圆H,作HF⊥OQ于点F,
∵RA=4=AO
∴∠AOR=∠ARO=45°,RO=
∵∠APR+∠AOR=135°+45°=180°
∴点A,点P,点R,点O四点共圆
∴点P在以点H为圆心,RO为直径的圆上,
∴点P,点H,点Q三点共线时,PQ值最大,
∵∠HOF=45°,HF⊥OQ,
∴∠FHO=∠HOF=45°,且OH=
∴HF=OF=2,
∴QF=OQ﹣OF=3﹣2=1
∴HQ=
∴PQ的最大值为.
技法3 借助三角形图形之间关联及边角关系实现转化
【典例精析】
例题1.(2019·江苏省初三期末)如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.
【答案】6
【详解】
解:如图所示,取AB的中点E,连接OE,DE,OD,
由题可得,D是AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE,
∵点D坐标为(4,3),
∴OD==5,
∵Rt△ABO中,OE=AB=×4=2,
∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,
∴BC的最小值等于6,
故答案为:6.
【针对训练】
1.(2019·山东省初三期中)如图,是的弦,,点是上的一个动点,且,若点,分别是,的中点,则的最大值是_______.
【答案】
【详解】
解:∵点分别是的中点,
∴,
∴当取得最大值时,就取得最大值,当是直径时,最大,
连接并延长交于点,连接,
∵是的直径,
∴.
∵,
∴,
∴,
∴.
故答案为:.
2.(2019·贵州中考真题)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为_____.
【答案】
【详解】如图,作AQ⊥BC于点Q,交DG于点P,
∵四边形DEFG是矩形,
∴AQ⊥DG,GF=PQ,
设GF=PQ=x,则AP=4﹣x,
由DG∥BC知△ADG∽△ABC,
∴,即,
则EF=DG=(4﹣x),
∴EG===,
∴当x=时,EG取得最小值,最小值为,
故答案为:.
3.(2018·河南省初三期中)如图,四边形中,,,,点,分别为线段,上的动点(含端点,但点不与点重合),点,分别是,的中点,则长度的最大值为___.
【答案】.
【详解】
解:如图,连结,
∵点,分别是,的中点,
∴,,
,
当点与点重合时,的值最大即最大,
在中,
,,,
,
的最大值.
故答案为:.
4.(2019·广东中考真题)已知在平面直角坐标系中,点,以线段为直径作圆,圆心为,直线交于点,连接.
(1)求证:直线是的切线;
(2)点为轴上任意一动点,连接交于点,连接:
①当时,求所有点的坐标 (直接写出);
②求的最大值.
【答案】(1)见解析;(2)①,;② 的最大值为.
【详解】
(1)证明:连接,则:
∵为直径
∴
∴
∵
∴
∴
∵
∴
∴
即:
∵轴
∴
∴
∴直线为的切线.
(2)①如图1,当位于上时:
∵
∴
∴设,则
∴
∴,解得:
∴
即
如图2,当位于的延长线上时:
∵
∴设,则
∴
∴
解得:
∴
即
②如图,作于点,
∵是直径
∴
∴
∴
∵半径
∴
∴的最大值为.
技法4 借助轴对称实现转化
【典例精析】
1.(2020·南山期末)如图,在的同侧,,点为的中点,若,则的最大值是_____.
【答案】14
【详解】
解:如图,作点关于的对称点,点关于的对称点.
,
,
,
,
,
为等边三角形
,
的最大值为,
故答案为.
技法5 借助线段和差实现转化
【典例精析】
例题1.(2019·河北省初三)如图,OA=4,C是射线OA上一点,以O为圆心,OA的长为半径作使∠AOB=152°,P是上一点,OP与AB相交于点D,点P′与P关于直线OA对称,连接CP,
尝试:
(1)点P′在所在的圆 (填“内”“上”或“外”);
(2)AB= .
发现:
(1)PD的最大值为 ;
【答案】尝试:(1)上;(2)2;发现:(1)3;
【详解】
尝试:(1)∵点P′与P关于直线OA对称,
∴点P′在所在的圆上,
故答案为:上;
(2)如图1,延长AO交所在圆上的点E,
连接BE,则∠ABE=90°,
∵∠AOB=152°,OB=OA,
∴∠BAO=∠ABO=14°
∵OA=4,
∴AE=2OA=8,
∴AB=AE?cos14°=8×=2,
故答案为:2;
发现:(1)∵PD=OP-PD,OP为定值,当OD值最小时,PD值最大,当OP⊥AB时,点D到直线AB的距离最小,故此时PD有最大值,
∵在Rt△AOD中, OA=4,cos∠OAD=,
∴AD=,
∴OD==1,
∴PD=4﹣1=3,
∴PD的最大值为3,
故答案为:3;
【针对训练】
1.(2020·晋江初三月考)如图,在中,,,P是以BC为直径的上的一个动点,连接AP,则AP长的最小值为_______.
【答案】9
【解析】
【分析】
如图,连接AM、PM,利用勾股定理可求出AM的长,根据AP+PM≥AM可得A,P,M三点共线时,AP的长最小,根据线段的和差关系即可求出此时AP的长.
【详解】
如图,连接AM、PM,
∵BC为的直径,BC=16,
∴CM=8,
在中,,
∵AP+PM≥AM,
∴当A,P,M三点共线时,AP的长最小,此时AP=AM-PM=AM-CM=17-8=9.
故答案为:9
微专题二:单线段最值+双动点型
考法指导
解决双动点问题的核心时,常借助六种方法把双动点问题转化为上述单动点型问题。
利用等量代换实现转化
利用线段和差实现转化
利用勾股定理实现转化
利用三角形图形之间关联及边角关系(构造全等,相似,中位线及直角三角形斜边上的中线)实现转化
利用添加“隐圆”实现转化
利用轴对称实现转化
技法1借助等量代换实现转化
【典例精析】
例题1.(2019·河北省)如图,中,,,,点D是AC上的任意一点,过点D作于点E,于点F,连接EF,则EF的最小值是_________.
【针对训练】
1.(2018·周南初二期中)已知:如图,已知直线 AB 的函数解析式为 y 2x 8 ,与 x 轴交于点 A ,与 y轴交于点 B .
(1)求 A 、 B 两点的坐标;
(2)若点 P m, n为线段 AB 上的一个动点(与 A 、B 不重合),作 PE x 轴于 E , PF y轴于点 F ,连接 EF ,问:
①若PEF 的面积为 S ,求 S 关于 m 的函数关系式,并求出当 S 3时 P 点的坐标;
②是否存在点 P ,使 EF 的值最小?若存在,求出 EF 的最小值;若不存在,请说明理由.
2.(2020·晋江初三月考)如图,点A在抛物线上,直线⊥y轴于点M,AC⊥于点C,以AC为对角线作矩形ABCD,若点M的坐标为(0,6),则BD的取值范围是_______.
3.(2017·四川中考在真题)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是( )
A.3 B.4 C.5 D.6
4.(2017·辽宁中考真题)已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.
(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为 ,说明理由;
(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;
(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
技法2借助隐圆实现转化
【典例精析】
例题1.(2019·黄陂区)在△ABC中,AB=5,AC=8,∠BAC=60°,点D是BC上一动点,DE⊥AB于E,DF⊥AC于F,线段EF的最小值为_____.
【针对训练】
1.(2019·湖北省初三月考)如图,等腰三角形△ABC中,∠BAC=120°,AB=3.
(1)求BC的长.
(2)如图,点D在CA的延长线上,DE⊥AB于E,DF⊥BC于F,连EF.求EF的最小值.
2.(2018·武汉市初二期中)在平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0),A(﹣x,0),C(0,y),且x、y满足.
(1)矩形的顶点B的坐标是 .
(2)若D是AB中点,沿DO折叠矩形OABC,使A点落在点E处,折痕为DO,连BE并延长BE交y轴于Q点.
①求证:四边形DBOQ是平行四边形.
②求△OEQ面积.
(3)如图2,在(2)的条件下,若R在线段AB上,AR=4,P是AB左侧一动点,且∠RPA=135°,求QP的最大值是多少?
技法3 借助三角形图形之间关联及边角关系实现转化
【典例精析】
例题1.(2019·江苏省初三期末)如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.
【针对训练】
1.(2019·山东省初三期中)如图,是的弦,,点是上的一个动点,且,若点,分别是,的中点,则的最大值是_______.
2.(2019·贵州中考真题)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为_____.
3.(2018·河南省初三期中)如图,四边形中,,,,点,分别为线段,上的动点(含端点,但点不与点重合),点,分别是,的中点,则长度的最大值为___.
4.(2019·广东中考真题)已知在平面直角坐标系中,点,以线段为直径作圆,圆心为,直线交于点,连接.
(1)求证:直线是的切线;
(2)点为轴上任意一动点,连接交于点,连接:
①当时,求所有点的坐标 (直接写出);
②求的最大值.
技法4 借助轴对称实现转化
【典例精析】
1.(2020·南山期末)如图,在的同侧,,点为的中点,若,则的最大值是_____.
【答案】14
【详解】
解:如图,作点关于的对称点,点关于的对称点.
,
,
,
,
,
为等边三角形
,
的最大值为,
故答案为.
技法5 借助线段和差实现转化
【典例精析】
例题1.(2019·河北省初三)如图,OA=4,C是射线OA上一点,以O为圆心,OA的长为半径作使∠AOB=152°,P是上一点,OP与AB相交于点D,点P′与P关于直线OA对称,连接CP,
尝试:
(1)点P′在所在的圆 (填“内”“上”或“外”);
(2)AB= .
发现:
(1)PD的最大值为 ;
【针对训练】
1.(2020·晋江初三月考)如图,在中,,,P是以BC为直径的上的一个动点,连接AP,则AP长的最小值为_______.