人教版数学八年级下册第18章《平行四边形》解答题培优专题练习 含答案解析

文档属性

名称 人教版数学八年级下册第18章《平行四边形》解答题培优专题练习 含答案解析
格式 zip
文件大小 346.1KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-07-26 20:45:41

图片预览

文档简介










人教版八年级下册第18章《平行四边形》解答题培优专题练习
1.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.
(1)求证:四边形CMAN是平行四边形
(2)已知DE=8,FN=6,求BN的长.




2.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(2)若AC=12,AB=16,求菱形ADCF的面积.


3.如图,在四边形ABCD中,AD∥BC,E为AD的中点,延长CE交BA的延长线上于点F,CE=EF.
(1)如图1,求证:四边形ABCD是平行四边形;
(2)如图2,若CE⊥AD,连接AC、DF,请直接写出图中和线段CD相等的所有线段.

4.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD是矩形.




5.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.




6.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.
(1)求证:四边形ABCD是正方形.
(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.



7.四边形ABCD的对角线AC和BD交于点O,AB=BC,AD=CD,分别过点C、D作CE∥BD.DE∥AC,CE和DE交于点E.
(1)如图1.求证:四边形ODEC是矩形;
(2)如图2.连接OE,AD∥BC时.在不添加任何辅助线及字母的情况下.请直接写出图中所有的平行四边形.



8.在?ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,
AF.
(1)求证:四边形DEBF是平行四边形;
(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.



9.如图,在?ABCD中,AB=AD,DE平分∠ADC,AF⊥BC于点F交DE于G点,延长BC至H使CH=BF,连接DH.
(1)证明:四边形AFHD是矩形;
(2)当AE=AF时,猜想线段AB、AG、BF的数量关系,并证明.


10.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.



11.如图,已知四边形ABCD为正方形,点E为对角线AC上的一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)判断CE,CG与AB之间的数量关系,并给出证明.



12.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.


13.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.
(1)求证:四边形AECF是平行四边形.
(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有与AE相等的线段(除AE外).






14.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F,
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.







15.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.

(1)证明平行四边形ECFG是菱形;
(2)若∠ABC=120°,连结BG、CG、DG,
①求证:△DGC≌△BGE;
②求∠BDG的度数;
(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.





16.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.
(1)求证:四边形BFEG是矩形;
(2)求四边形EFBG的周长;
(3)当AF的长为多少时,四边形BFEG是正方形?





参考答案
一.解答题(共16小题)
1.【解答】(1)证明:∵AE⊥BD,CF⊥BD,
∴AM∥CN,
∵四边形ABCD是平行四边形,
∴CM∥AN
∴四边形CMAN是平行四边形;
(2)解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADE=∠CBF,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=BC,
∴△ADE≌△CBF(AAS);
∴DE=BF=8,
∵FN=6,
∴.
2.【解答】(1)证明:∵E是AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
在△AEF和△DEB中,
∵,
∴△AEF≌△DEB(AAS),
∴AF=DB,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=CD=BC,
∴四边形ADCF是菱形;
(2)解:设AF到CD的距离为h,
∵AF∥BC,AF=BD=CD,∠BAC=90°,
∴S菱形ADCF=CD?h=BC?h=S△ABC=AB?AC=×12×16=96.
3.【解答】(1)证明:∵E是AD的中点,
∴DE=AE,
在△DEC和△AEF中,,
∴△DEC≌△AEF(SAS),
∴∠D=∠EDF,
∴CD∥AB,
又∵AD∥BC,
∴四边形ABCD是平行四边形;
(2)解:图中和线段CD相等的所有线段为AC、AF、DF、AB,理由如下:
∵四边形ABCD是平行四边形,CE⊥AD,
∴AB=CD,四边形ABCD是菱形,
∴AC=AF=DF=CD,
∴AC=AF=DF=CD=AB.
4.【解答】证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠A+∠D=180°,
在△ABM和△DCM中,

∴△ABM≌△DCM(SSS),
∴∠A=∠D=90°,
即可得出平行四边形ABCD是矩形.
5.【解答】(1)证明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵AB=BC,
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
又∵AB=BC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴AC⊥BD,OB=OD,OA=OC=AC=2,
在Rt△OCD中,由勾股定理得:OD==4,
∴BD=2OD=8,
∵DE⊥BC,
∴∠DEB=90°,
∵OB=OD,
∴OE=BD=4.
6.【解答】(1)证明:∵四边形ABCD是菱形,
∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,
∴∠BAD+∠ABC=180°,
∵∠CAD=∠DBC,
∴∠BAD=∠ABC,
∴2∠BAD=180°,∴∠BAD=90°,
∴四边形ABCD是正方形;
(2)证明:∵四边形ABCD是正方形,
∴AC⊥BD,AC=BD,CO=AC,DO=BO,
∴∠COB=∠DOC=90°,CO=DO,
∵DH⊥CE,垂足为H,
∴∠DHE=90°,∠EDH+∠DEH=90°,
∵∠ECO+∠DEH=90°,
∴∠ECO=∠EDH,
在△ECO和△FDO中,,
∴△ECO≌△FDO(ASA),
∴OE=OF.
7.【解答】(1)证明:∵AB=BC,AD=CD,
∴BD垂直平分AC,
∴∠COD=90°,
∵CE∥BD,DE∥AC,
∴四边形ODEC是平行四边形,
∵∠COD=90°,
∴四边形ODEC是矩形;
(2)解:∵AB=BC,AD=CD,
∴BD垂直平分AC,
∴AO=OC,∠BOC=∠AOD,
∵AD∥BC,
∴∠BCO=∠DAO,
∴△AOD≌△COB(ASA),
∴AD=BC,
∴四边形ABCD是平行四边形,
∵CE∥BD.DE∥AC,
∴四边形ODEC是平行四边形,
∴DE=CO,
∴DE=AO,
∴四边形AOED是平行四边形,
∴AD=OE,AD∥OE,
∴BC=OE,BC∥OE,
∴四边形OECB是平行四边形,
综上所述,四边形ABCD,四边形ODEC,四边形AOED,四边形OECB是平行四边形.

8.【解答】(1)证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AD=CB,
在△DAE和△BCF中,
∴△DAE≌△BCF(SAS),
∴DE=BF,
∵AB=CD,AE=CF,
∴AB﹣AE=CD﹣CF,
即DF=BE,
∵DE=BF,BE=DF,
∴四边形DEBF是平行四边形;
(2)解:
∵AB∥CD,
∴∠DFA=∠BAF,
∵AF平分∠DAB,
∴∠DAF=∠BAF,
∴∠DAF=∠AFD,
∴AD=DF,
∵四边形DEBF是平行四边形,
∴DF=BE=5,BF=DE=4,
∴AD=5,
∵AE=3,DE=4,
∴AE2+DE2=AD2,
∴∠AED=90°,
∵DE∥BF,
∴∠ABF=∠AED=90°,
∴AF===4.

9.【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵CH=BF,
∴FH=BC,
∴AD=FH,
∴四边形AFHD是平形四边形,
∵AF⊥BC,
∴∠AFH=90°,
∴平行四边形AFHD是矩形;

(2)猜想:AB=BF+AG,


证明:如图,延长BF到M,使HM=AG,连接DM,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠1=∠2,
∵DE平分∠ADC,
∴∠2=∠3,
∴∠1=∠3,
∴AE=AD,
∵AE=AF,
∴AF=AD,
四边形AFHD是正方形,
∴AD=DH,∠GAD=∠DHM=90°,
在△DAG和△DHM中

∴△DAG≌△DHM(SAS),
∴∠2=∠3=∠HDM,∠AGD=∠M,
∵AF∥DH,
∴∠AGD=∠HDG=∠2+∠CDH=∠MDH+∠CDH,
∴∠M=∠CDM,
∴CD=CM=CH+HM,
∵BC=AD=FH,
∴BC﹣CF=FH﹣CF,
∴BF=CH,
∵AB=CD,HM=AG,
∴AB=BF+AG.
10.【解答】解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,
∵正方形ABCD,
∴∠BCD=90°,∠ECN=45°,
∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,
∴四边形EMCN为正方形,
∵四边形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,,
∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG为正方形,
(2)CE+CG的值为定值,理由如下:
∵矩形DEFG为正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四边形ABCD是正方形,
∵AD=DC,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴AE=CG,
∴AC=AE+CE=AB=×4=8,
∴CE+CG=8是定值.

11.【解答】证明:(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:
∵四边形ABCD是正方形,
∴∠BCD=90°,∠ECN=45°,
∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,
∴四边形EMCN为正方形,
∵四边形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,

∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG为正方形;

(2)∵矩形DEFG为正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四边形ABCD是正方形,
∴AD=DC,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,

∴△ADE≌△CDG(SAS),
∴AE=CG,
∴在Rt△ABC中,,


12.【解答】证明:
(1)∵CE平分∠BCD、CF平分∠GCD,
∴∠BCE=∠DCE,∠DCF=∠GCF,
∵EF∥BC,
∴∠BCE=∠FEC,∠EFC=∠GCF,
∴∠DCE=∠FEC,∠EFC=∠DCF,
∴OE=OC,OF=OC,
∴OE=OF;
(2)∵点O为CD的中点,
∴OD=OC,
又OE=OF,
∴四边形DECF是平行四边形,
∵CE平分∠BCD、CF平分∠GCD,
∴∠DCE=∠BCD,∠DCF=∠DCG
∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,
即∠ECF=90°,
∴四边形DECF是矩形.
13.【解答】(1)证明:如图,连接AC交BD于点O,
在?ABCD中,OA=OC,OB=OD,
∵BE=DF,
∴OB﹣BE=OD﹣DF,
即OE=OF,
∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);

(2)解:∵AB∥CD,
∴∠ABF=∠CDF=36°,
∵AF=EF,
∴∠FAE=∠FEA=72°,
∵∠AEF=∠EBA+∠EAB,
∴∠EBA=∠EAB=36°,
∴EA=EB,
同理可证CF=DF,
∵AE=CF,
∴与AE相等的线段有BE、CF、DF.

14.【解答】(1)证明:在正方形ABCD中,AB=BC,
∠ABP=∠CBP=45°,
在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)解:由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∴∠DAP=∠DCP,
∵PA=PE,
∴∠DAP=∠E,
∴∠DCP=∠E,
∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPE=∠EDF=90°
(3)解:AP=CE;理由如下:
在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠BCP,
∵PA=PE,
∴PC=PE,
∴∠DAP=∠DCP,
∵PA=PC,
∴∠DAP=∠AEP,
∴∠DCP=∠AEP
∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,
∴△EPC是等边三角形,
∴PC=CE,
∴AP=CE.
15.【解答】解:(1)证明:
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形;

(2)①∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,AD∥BC,
∵∠ABC=120°,
∴∠BCD=60°,∠BCF=120°
由(1)知,四边形CEGF是菱形,
∴CE=GE,∠BCG=∠BCF=60°,
∴CG=GE=CE,∠DCG=120°,
∵EG∥DF,
∴∠BEG=120°=∠DCG,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∴△DGC≌△BGE(SAS);
②∵△DGC≌△BGE,
∴BG=DG,∠BGE=∠DGC,
∴∠BGD=∠CGE,
∵CG=GE=CE,
∴△CEG是等边三角形,
∴∠CGE=60°,
∴∠BGD=60°,
∵BG=DG,
∴△BDG是等边三角形,
∴∠BDG=60°;

(3)如图2中,连接BM,MC,

∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形.
∵AB=8,AD=14,
∴BD=2,
∴DM=BD=.
16.【解答】解:(1)证明:∵四边形ABCD为正方形,
∴AB⊥BC,∠B=90°.
∵EF⊥AB,EG⊥BC,
∴EF∥GB,EG∥BF.
∵∠B=90°,
∴四边形BFEG是矩形;

(2)∵正方形ABCD的周长是40cm,
∴AB=40÷4=10cm.
∵四边形ABCD为正方形,
∴△AEF为等腰直角三角形,
∴AF=EF,
∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.

(3)若要四边形BFEG是正方形,只需EF=BF,
∵AF=EF,AB=10cm,
∴当AF=5cm时,四边形BFEG是正方形.