北师版六年级数学下册课件总复习4.图形与几何(8份打包)

文档属性

名称 北师版六年级数学下册课件总复习4.图形与几何(8份打包)
格式 zip
文件大小 32.9MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-04-21 13:49:08

文档简介

(共18张PPT)
第1课时 图形的认识(1)
总复习

上面哪几个是平面图形?哪几个是立体图形呢?
把这些图形分类,并找一找它们之间的关系。












复习导入
图 形
平面图形












立体图形
复习导入
1.我们学过哪些图形?把这些图形分类,并找出它们之间的关系。

图形
平面图形
立体图形

多边形

……

三角形
四边形
五边形
……

锐角三角形
直角三角形
钝角三角形

平行四边形
梯形
……
三角形
等腰三角形
等边三角形
立体图形
长方体
圆柱
圆锥
正方体

四边形

平行四边形

长方形

梯形

正方形
回顾与交流
2.结合具体的物体或图形,说说立体图形与平面图形之间的联系。


从正方体的正面看,是一个正方形。
从长方体的正面看,是一个长方形。
回顾与交流
圆柱的侧面展开图是一个长方形,上下两个面是圆形。
圆锥的截面是一个三角形。




2.结合具体的物体或图形,说说立体图形与平面图形之间的联系。
回顾与交流
分别画出直线、射线和线段,并说一说他们的联系与区别。


线 段

射 线



直 线
两个端点
一个端点
无端点
有限长
无限长
无限长
回顾与交流
3.画两条直线,想一想,在什么情况下两条直线互相垂直?在什么情况下两条直线互相平行?













垂足
两条直线相交
直线会无限延长,两直线也相交。
两直线相交成直角,两直线互相垂直。



两条直线永远不会相交,平行线之间处处相等。
不在同一平面内。平行与垂直的前提是同一平面内。
回顾与交流
下列图中,∠1和∠2哪个角大?



1



2
从一点引出两条射线就组成一个角。
角的大小与两边的长短无关,只与两边张开的大小有关。
∠2 >∠1
回顾与交流
4.写出下面各角的名称,并说出它的度数或范围。



( )



( )



( )



( )


( )
锐角
1周角=2平角=4直角
0°<锐角<90°
直角
直角=90°
钝角
90°<钝角<180°
平角
平角=180°
周角
周角=360°
回顾与交流
1.在下图中找一找,哪部分可以看作是互相平行的?哪部分可以看作是互相垂直的?
双杠的两条杠杆可以看作互相平行。
人体与单杠呈垂直状态。
吊环与人体接近垂直。
巩固与应用
用量角器量出下面各角,并指出各角之间的关系。





3
4


1
2







5
6
∠1=
∠2=
∠3=
∠4=
∠5=
∠6=
130°
130°
对顶角相等
∠1 = ∠2
40°
40°
内错角相等
∠3 = ∠4
30°
60°
直角三角形两个内角和是 90°
基础练习
判断题。(对的打“√”,错的打“×”)
1.从直线外一点到这条直线所画的线段中,以和这条直线垂直的线段为最短。( )











基础练习
判断题。(对的打“√”,错的打“×”)
基础练习
2.平角也是一条直线。 ( )
3.角的两边越长角越大。 ( )
4.一条直线的长度是一条射线长度的2倍。 ( )
5.在同一平面内,两条直线都与另一条直线垂直,那么这两条直线一定平行。( )
6.过三点可画一条直线。 ( )
×

×
×
×
(1)把一个300°的角放在5倍的放大镜下,该角是( )。
A、300° B、1500° C、不能确定
(2)下图中,有( )组互相平行的线段,有( )组互相垂直的线段。
A、4 B、6 C、8
选择题。(把正确答案的序号填在括号里)
A
A
A
基础练习
看下图已知∠1=60°,求∠2、 ∠3和∠4的度数。



1
2
3
4
∠1=60°
∠3=60°
∠2=180-60=120°
∠4=180-60=120°
对顶角相等
基础练习
这节课你有什么收获?还有什么疑问吗?

课堂小结
谢 谢 观 看!
(共14张PPT)
第2课时 图形的认识(2)
总复习





10cm

5cm

10cm





10cm



5cm





10cm



5cm





10cm


5cm





10cm



5cm





10cm

5cm
复习导入

你能画出哪些平面图形?





10cm

5cm

10cm





10cm


5cm


10cm










画出的图形还可以用加一加或减一减的方式进行组合。
复习导入
5.平面图形的特点
三角形

按角分

锐角三角形
直角三角形
鈍角三角形

等腰三角形
按边分


等边三角形
……















三角形的三个内角的和180°。
有一条对称轴
有三条对称轴
回顾与交流
平形四边形

两组对边分别平行且相等


长方形

两组对边分别平行且相等
四个角都是直角

四边相等

正方形
直角
两组对边分别平行
四个角都是直角
四条边都相等


名称
图形
特性






5.平面图形的特点
回顾与交流
梯形





只有一组对边平行

直角梯形
有两个直角。与底垂直的那条腰等于梯形的高






等腰梯形
两条腰相等



在同一个圆中,所有的直径都相等,所有的半径都相等,直径是半径的两倍。




回顾与交流
5.平面图形的特点
名称
图形
特性
6.举例说明平面图形的特点在生活中的应用。
三角形的房梁架利用三角形的稳定性。
拉闸门利用平行四边形易变形的特点。
圆形的车轮、井盖等利用圆的圆心到圆上的距离处处相等的特点。
回顾与交流
(1)一个三角形里如果有两个锐角,这个三角形必定是一个锐角三角形。( )
(2)所有的等腰三角形都是锐角三角形。 ( )

(3)钝角三角形的内角和大于锐角三角形的内角和。( )

(4)两端都在圆上的线段都是直径。 ( )

判断题。(对的在括号内打“√”号,错的打“×”)
×
×
×
×
锐角三角形,三个角都是锐角。
等边三角形一定是锐角三角形。
所有三角形的内角和都是180°。
还要经过圆心。
基础练习

2
4


2
5
2





o
2

5
3
4


4
2


3

3
3
计算下面图形的面积(单位:cm)。口答
S=2×4=8cm2
S=3×3=9cm2
S=3×4÷2=6cm2
S=2×4=8cm2
S=(2+5)×2÷2=7cm2
S=3.14×22=12.56cm2
基础练习

4.在能围成三角形的一组线段下面画“√”。




0.5㎝



2.5㎝



3㎝



2㎝



4㎝




1㎝




1.8㎝




1㎝



2㎝





三角形任意两边之和大于第三边。
巩固与应用




下图中,你能数出 个梯形。

6
+
7
+
2
+
2
+
1

先一个一个数有6个。









接着两个两个数,有7个。


18








基础练习


























下面图形可以由三角形组成吗?从中推导每个图形的内角和。
每个四边形都可以分成两个三角形,所以四边形的内角和是360°。
五边形
180×3=540°
六边形
180×4=720°
n边形180×(n-2)
基础练习
这节课你有什么收获?还有什么疑问吗?

课堂小结
谢 谢 观 看!
(共15张PPT)
第3课时 图形的认识(3)
总复习
1.从正面看到 的图形:
2.从侧面看到 的图形:
3.从上面看到 的图形:
观察下面用4个正方体搭成的图形,并填一填。

②⑤
①④
复习导入
如果把上面的图形分成两类,可以怎样分?


长方体
正方体
圆柱
圆锥





8.分别说出已学过的立体图形的特点,并尝试验证。




r

回顾与交流
形体 面 棱 顶点
长方体
正方体
长方体和正方体的特点
6个面
相对的面完全相同,特殊情况两个相对面为正方形
6个面
都是正方形
12条棱
相对的棱长度相等。
12条棱
每条棱长度相等。
8个顶点
8个顶点
回顾与交流
圆柱和圆锥的特点


①高有无数条
②侧面展开是长方形或正方形或平行四边形
③有上下两个底面,是相等的圆形
①侧面是一个曲面
②高只有一条
③有一个底面,是圆形




回顾与交流
请把下面图形从正面、上面、左面看到的图形画出来。








正面




上面



左面
基础练习
想一想,下面的平面图形,以它的一条边为轴旋转一周,会形成什么样的空间图形。用线连一连。
基础练习
下面的图形哪些是正方体的展开图,先想一想,再试一试。



































可以
一个顶点最多可以连接三个面,不可以。
一个顶点最多可以连接三个面,不可以。
可以
不可以。横排最多只有四个面。
基础练习





如图是有( )个棱长为1厘米的正方体搭成的,将这个立方体的表面图上红色。其中只有三面图上红色的正方体有( )个,只有四面涂上红色的正方体 有( )个,只有五面涂上红色的正方体有( )个 ,涂上红色的面积是( )厘米2。
想一想,填一填。
5
1
3
1
20
基础练习
一个立体图形从上面看是 ,




从左面看是 。










要搭成这样的立体图形,至少要用( )个小立方体,最多可以有( )个小立方体。















5个
5个
5个
5
7个
7
基础练习







分别画出从正面、上面、左面看到的立体图形的形状。




































正面
上面
左面






基础练习
在下图中,分别画出猴子在A、B位置所能看到的范围。





在A点看到的
在B点看到的
基础练习
5.长方体的两个面如下图,请画出与这两个面不相同的第三个面。
6cm
4cm
3cm


3cm

从已知的两个面中,我知道了长方体的长、宽、高分别是6cm、4cm、3cm。

所以第三个面肯定是6cm和4cm的长方形。
6cm
4cm

巩固与应用
这节课你有什么收获?还有什么疑问吗?

课堂小结
谢 谢 观 看!
(共14张PPT)
第4课时 图形与测量(1)
总复习

工人需要知道哪些有关图形测量的数据?
复习导入

我测量线的长短。

根据长宽可以知道房屋占地面的大小。

还要考虑高度。
复习导入
(1)长度的意义:长度指的是线段的长短。如给草坪围上篱笆,要测量出篱笆的长度。

(2)面积的意义:面积指物体所占的平面的大小。如给地面铺上草坪,要测量并计算出草坪占多大的面积;给柱子刷漆,要测量并计算出所要刷漆的面积。

(3)体积的意义:体积是指物体所占的空间的大小。如给水池注满水,要测量并计算出所需水的体积。
回顾与交流
1.结合实例,说一说你对长度、面积、体积的认识。
单位的产生:在生产与生活中,人们经常要量物体的长度,测量土地的面积,计量物体的体积等,这些量不能直接数出来,必须要用一定的量作单位来计量,然后用数表示出来,因此产生了长度单位、面积单位、体积单位、角度单位等计量单位。

测量要有单位。

为什么要用统一的“单位”呢?
测量线的长短
测量面的大小
测量体积的大小
测量角的大小
2.看一看,说一说。
回顾与交流
3.填一填。
回顾与交流
长度单位间的进率 面积单位间的进率 体积(容积)单位间的进率
1 m =( )dm
1 dm =( )cm
1 cm =( )mm 1 m2 =( )dm2
1 dm2 =( )cm2
1 cm2 =( )mm2
1 m3 =( )dm3
1 dm3 =( )cm3
1 cm3 =( )mm3
1 L =( )mL
10
10
10
100
100
100
1000
1000
1000
1000
1m:如小学生两臂伸长的长度;米尺的长度。
1dm:如水芯笔的长度;粉笔盒的棱长。
1cm:如手指甲盖的宽;数学书的厚度。
4.借助实例说一说1m,1dm,1cm分别有多长;1m2,1dm2,1cm2,1m3,1mL分别有多大。
回顾与交流
1m2:边长是1m的正方形,面积是1m2。房屋占地面积多少一般用平方米作单位。
手指甲盖的面积是1cm2;
粉笔盒一个面的面积是1dm2。
棱长是1m的正方体,体积是1m3。 如一台滚筒洗衣机的体积;讲桌的体积。
1L=1dm3,棱长是1dm的正方体,体积是 1dm3,即1L。如:粉笔盒的容积;一瓶可乐的容积。
回顾与交流
1 mL=1 cm3,棱长是1 cm的正方体,体积是1cm3,即1mL。如骰子;咖啡方糖。
4.借助实例说一说1m,1dm,1cm分别有多长;1m2,1dm2,1cm2,1m3,1mL分别有多大。
(1)中心对顶点(量角器的中心与角的顶点对齐重合);
(2)零线对一边(量角器0刻度线与一条起始边对齐重合);
(3)它边看度数(角的另一条边所对的是角的度数);
(4)内外要分辨(量角器上有两条0刻度线,一条是内圈的,一条是外圈的;0刻度线在内圈,度数就读内圈;0刻度线在外圈,度数就读外圈)。
5.与同伴交流,你是如何量角的。在估计角的大小时,你有什么好办法。
中心与顶点重合
角的一边与零刻度线重合
读刻度
回顾与交流
估计下面角的度数。
大约140°
大约50°
大约90°
估计角的方法:
以直角为标准,先观察比直角大还是比直角小,如果比直角小,就看要估计的角大约占直角的几分之几,从而估出度数;如果比直角大,就看要估计的角大约比直角大几分之几,再估出度数。
基础练习
在括号里填上合适的单位。
1.橡皮长3( )。
2.林林家的方桌桌面大约是1( )。
3.一块橡皮擦的上表面大约是4( )。
4.爸爸的手掌面大约是1( )。
5.牙膏盒的体积约200( )。
6.笑笑家到学校的距离是2( )。
7.笑笑家的冰箱容积是158( )。
厘米
平方米
平方厘米
平方分米
立方厘米
千米

基础练习
725mm=( )dm
0.4m=( )cm
3.2m2=( )dm2
5dm2=( )cm2
7500mL=( )L
6.2dm2=( )cm2
320mL=( )cm3
64cm3=( )dm3
8.75m3=( )dm3
2.8L=( )mL
4160cm2=( )dm2
0.24km2=( )m2
40
7.5
41.6
7.25
0.062
2800
320
240000
320
500
8750
0.064
2.填一填。
巩固与应用
这节课你有什么收获?还有什么疑问吗?

课堂小结
谢 谢 观 看!
(共16张PPT)
第5课时 图形与测量(2)
总复习

请举例说一说什么是周长?什么是面积?
图形一周的长度就是
图形的周长。
物体的表面或封闭图形
的大小就是它们的面积。

树叶一周的长度是树叶的周长。

树叶表面的大小是树叶的面积。

复习导入

6.想办法求出下面图形的周长,并说说什么是周长。
图1和图2只要量出每边的长度相加即可。
图3要运用化曲为直的方法,用线围一圈拉直就可以量出长度了。


回顾与交流
周长就是封闭图形一周的长度。
长方形的周长与面积的计算公式。

a
b
周长公式:长方形的周长=(长+宽)×2
字母公式:C=2(a+b)
面积公式:长方形的面积=长×宽
字母公式:S=ab










用数方格的方法可以推导出长方形的面积公式。
回顾与交流
7.分别说出已学过的多边形的面积计算公式,并说说公式之间的联系。

a
a
周长公式:正方形的周长=边长×4
字母公式:C=4a
面积公式:正方形的面积=边长×边长
字母公式:S=a2








正方形可以看作长和宽相等的长方形。
正方形的周长与面积的计算公式。
回顾与交流
周长公式:平行四边形的周长=四边总和
字母公式:无
面积公式:平行四边形的面积=底×高
字母公式:S=ah

用割补法把平行四边形转化成长方形。



a
h
平行四边形的周长与面积的计算公式。
回顾与交流
周长公式:三角形的周长=三边总和
字母公式:无
面积公式:三角形的面积=底×高÷2
字母公式:S=ah ÷2

两个完全相等的三角形可以拼成一个平行四边形。
a

h

三角形的周长与面积的计算公式。
回顾与交流

周长公式:梯形的周长=四边总和
字母公式:无
面积公式:梯形的面积=(上底+下底)×高÷2
字母公式:S=(a+b)h ÷2

两个完全相等的梯形可以拼成一个平行四边形。
a
h
b

b
a
梯形的周长与面积的计算公式。
回顾与交流
圆的面积计算公式:
已知半径:S=πr2;
已知直径:S=π(d/2)2;
已知周长:S=π(C÷π÷2)2。
8.想一想圆的面积计算公式的探索过程,并说一说圆的面积公式。
回顾与交流
9.举例说明什么是立体图形的表面积。说一说长方体、正方体、圆柱的表面积的计算方法。
立体图形的表面积计算方法:
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
正方体的表面积=棱长×棱长×6
S=6a2
圆柱的侧面积=底面周长×高
S侧=Ch
圆柱的表面积=侧面积+两个底面的面积
S表=Ch+2πr2
回顾与交流
填一填。
1.一个平行四边形和一个三角形等底等高,已知三角形的面积是20平方厘米,平行四边形的面积是(  )平方厘米。
2.一个平行四边形和一个三角形等底等高,已知平行四边形的面积是20平方厘米,三角形的面积是(  )平方厘米。
40
两个完全相等的三角形可以拼成一个和它等底等高的平行四边形。
等底等高的三角形面积是平行四边形的一半。
10
基础练习
填一填。
3.一个平行四边形和一个三角形等底等高,已知平行四边形比三角形的面积大7平方厘米,三角形的面积是( )平方厘米,平行四边形的面积是( )平方厘米。
4.小圆半径2厘米,大圆半径3厘米,小圆周长与大圆周长的比是( );小圆面积与大圆面积的比是( )。
基础练习
7
等底等高的平行四边形和三角形面积比是2∶1。
两圆的周长比和半径比一样,面积比是周长比的平方。
14
2∶3
4∶9
求下图中涂色部分的面积。(单位:米)
100×80+3.14×(80÷2)2
=8000+5024
=13024(cm2)
3.14×102÷2
=157(cm2)
长方形面积+圆面积
半圆面积
基础练习
正方形面积-圆面积
你能计算出这个图形 中绿色部分的面积吗?





20厘米





20厘米


20×20-3.14×102
=400-314
=86cm2
基础练习
这节课你有什么收获?还有什么疑问吗?

课堂小结
谢 谢 观 看!
(共20张PPT)
第6课时 图形与测量(3)
总复习
怎样选择下面的材料制作一个水桶,有几种方案?
复习导入
水桶的形状可能是长方体





水桶的形状可能是圆柱




想一想,制作出的水桶可能是什么形状的?
复习导入

底面




底面







给圆柱体画出平面图。
复习导入

62.8cm
31.4cm

20cm


高31.4cm
底面直径20cm
底面直径20cm圆周长是62.8cm
可以选择长62.8cm、宽31.4cm的长方形做水桶侧面,底面直径为20cm的圆做水桶的底。
复习导入

62.8cm
31.4cm

10cm


高62.8cm
底面直径10cm
底面直径10cm圆周长是31.4cm
可以选择长31.4cm、宽62.8cm的长方形做水桶侧面,底面直径为10cm的圆做水桶的底。
复习导入





立体
平面



给长方体也画个平面图。


复习导入

62.8cm
31.4cm

高31.4cm
底面边长15.7cm

15.7cm

62.8÷4=15.7(cm)
可以选择长62.8cm、宽31.4cm的长方形做水桶侧面,底面边长15.7cm的正方形做水桶的底。
复习导入

62.8cm
31.4cm

高62.8cm
底面边长7.85cm

7.85cm

31.4÷4=7.85(cm)
可以选择长31.4cm、宽62.8cm的长方形做水桶侧面,底面边长7.85cm的正方形做水桶的底。
复习导入
怎样选择材料制作水桶?

联系已有知识经验想象水桶形状

侧面展开图是长方形

底面是圆形(或正方形)
选择长方形和圆形(或正方形)材料

长方形的长或宽等于底面的周长

形成制作水桶的方案
立体

平面

立体
问题
想象
选择
计算
答案









复习导入

这些立体图形的体积计算
公式,是怎样推导出来的?



我们学过哪些立体图形?
回顾与交流










5厘米
4厘米
长方体的体积 = 长×宽×高
V = ɑbh


















































长方体的体积 = 底面积×高
V = Sh
长方体体积的推导:
3


10.分别说出已学过的立体图形的体积计算公式,并说说公式之间的联系。
回顾与交流











正方体是长、宽、高都相等的长方体。
正方体的体积 = 棱长×棱长×棱长
V = ɑ3
正方体的体积 = 底面积×高
V = Sh
棱长
棱长
棱长
长方体的体积 = 长 × 宽 × 高
正方体体积的推导:




10.分别说出已学过的立体图形的体积计算公式,并说说公式之间的联系。
回顾与交流



圆柱体积的推导:
V = S h
10.分别说出已学过的立体图形的体积计算公式,并说说公式之间的联系。
回顾与交流















圆柱体积=底面积×高



圆锥体积=底面积×高×
?
圆锥体积的推导:
?
10.分别说出已学过的立体图形的体积计算公式,并说说公式之间的联系。
回顾与交流
经过实验探究,发现等底等高的圆柱和圆锥容器刚好倒三次正好倒满。


















a
b
h

























a
a
a
h
h
S
S
V=
ɑbh
V =
ɑ·ɑ·ɑ=ɑ?
V =
Sh
V =
Sh
1
3


V = Sh
S
h
S
联系:
10.分别说出已学过的立体图形的体积计算公式,并说说公式之间的联系。
回顾与交流

6
6
6

6
9
4

6

4
求立体图形的体积和表面积。(只列式不计算)
不用计算,你能很快比较出谁的体积最大吗?
6×9×4
体积:
6×6×6
3.14×(4÷2)2×6
6×6×6
3.14×4×6+3.14×(4÷2)2×2
(9×4+4×6+6×9)×2
表面积:
高相等,只要看这三个图形的底面就行。
基础练习
一个长方体苹果箱的规格是40×30×25(单位:cm),它的体积是多少立方厘米?制作10个这样的纸箱至少需要多少板纸?
(40×30+40×25+30×25)×2×10
40×30×25
答:它的体积是30000立方厘米。制作10个这样的纸箱至少需要59000平方厘米板纸。
=1200×25
=30000(cm3)
=2950×20
=59000(cm2)
基础练习
这节课你有什么收获?还有什么疑问吗?

课堂小结
谢 谢 观 看!
(共14张PPT)
第7课时 图形的运动
总复习
你知道这些图案分别用什么方法设计出来的吗?

轴对称
平移
旋转、放大或缩小

图形运动可以设计出美丽的图案
复习导入
答:图A是轴对称图形。
答:图A向下平移3格得到图2。
1.观察右面的图形,并解答下面的问题。
(2)图1中图A经过怎样的运动可以得到图2?
(1)图A是轴对称图形吗?
回顾与交流



















图1



















图2
A
答:图A绕小红点逆时针旋转90°,再向下平移2格得到图3。
图A绕小红点顺时针旋转90°,再向右平移2格,再向下平移2格得到图4。
1.观察右面的图形,并解答下面的问题。
(3)图1中图A经过怎样的运动可以得到图3?要得到图4呢?试一试。
回顾与交流



















图3



















图4



图形的运动
平移
旋转
轴对称


要素:
画法:所有点向相同方向,移动相同距离

要素:
画法:绕一个点,按某个方向转动一个角度

对折,能够完全重合
画法:对应点到对称轴的距离相等

方向

距离

中心点
方向和角度
图形运动知识导图
形状不变,大小不变
回顾与交流
2.在学过的图形中,哪些图形是轴对称图形?它们分别有多少条对称轴?

你知道这些图形的轴对称数量吗?
对称轴数量 图形 对称轴数量
等腰三角形 圆
等边三角形 环形
长方形 扇形
正方形 半圆
平行四边形 等腰梯形
1条
3条
2条
4条
0条
无数条
无数条
1条
1条
1条
回顾与交流
是轴对称图形
是轴对称图形
不是轴对称图形
下列图案中,哪些不是轴对称图形?





不是轴对称图形
巩固与应用


2.画一画。
(1)将小旗向上平移12格。
(2)将图形绕点O 顺时针旋转90°。

12格
巩固与应用
2.画一画。
(1)画出房子的另一岸。
巩固与应用












5.笑笑非常喜爱《小英雄雨来》中“我们是中国人,我们爱自己的祖国”这句话,于是她自己刻了一枚如下所示的印章。下面四个图案中用这枚印章印制的是( )印。


A
巩固与应用
·
·

·
·

·
·

·
·


·
·

·
·


·
·



注意:对称点到对称轴的距离是相等的。
根据对称轴画出图形的另一半。
基础练习


























O
A







B

C









将 A 绕点 O 顺时针旋转 90°得到B,再将 B 向右平移 7 格得到 C,然后画出 C 的轴对称图形。
基础练习
这节课你有什么收获?还有什么疑问吗?

课堂小结
谢 谢 观 看!
(共16张PPT)
第8课时 图形与位置
总复习
下图中,小狗的位置用数对表示为(  ),小鸡的位置用数对表示为(  ),小猫的位置用数对表示为(   ),小鸭子的位置用数对表示为(   )。
3,3
2,2
4,2
3,2
横排叫作行
竖排叫作列

先列后行
复习导入
用数对表示物体的位置。
用数对表示位置时,要按照先列数再行数的顺序表示,中间用逗号隔开。竖排叫列,横排叫行,确定第几列一般要从左往右数,确定第几行一般要从前往后数。表示为(列数,行数)。

如果第一个数字相同,则表示在同一列。

如果第二个数字相同,则表示在同一行。
复习导入
星期日,奇思去动物园游玩,在大门口看到了动物园的示意图。他想先去百鸟园,你能帮他确定百鸟园相对大门的位置吗?
回顾与交流
可以用数对来表示位置
(1,2)
(4,3)
(4,1)
(0,0)
百鸟园和猴山在同一列上。

位置在同一列上的,第一个数字相同。
回顾与交流
还可以用方向距离表示位置。


55°
以大门为观测点,百鸟园在大门北偏东55°方向。
也可以说百鸟园在大门东偏北35°方向。
35°
回顾与交流
1.方向:在地图或平面图上,通常用上北、下南、左西、右
东来表示方向。
2.用方向描述物体位置的三要素:①方向;②角度;③距离。
3.描述路线图:
①按行走路线确定观测点及行走方向;
②根据比例尺和图上距离计算出相应的实际距离;
③用恰当的词语按顺序叙述。
4.画路线图:
①确定方向;
②根据实际距离和图纸大小确定比例尺;
③根据比例尺和实际距离求出图上距离;
④确定起点,根据方向和图上距离确定下一目的地的位置,再以下一地点为起点继续画,依次进行。
回顾与交流
小明看小兰是在南偏东45°1000米的方向上,小兰看小明就是在(    )45°( )米方向上。

1000米





小明
小兰


观测点改变,方向正好相反,角度和距离不会变化。
北偏西
基础练习
A:(0,0)
B:(1,2)
C:(2,1)
D:(3,0)
E:(4,4)
F:(6,5)
G:(0,6)
2
0
3
1
5
6
4
2
A
1
C
3
6
4
F
5
B
D
E
G
写出下列各字母的数对。
基础练习
(1)法院在三井小学( )面( )米处。
兴业苑在三井小学( )面( )米处。
西






东方超市
三井小学
兴业苑

法院


40°
60°

N
比例尺: 1:25000


金城花苑
旺角花园



太湖路
以三井小学为观测点,算一算,填一填。
基础练习
1000
750
(2)旺角花园大约在三井小学( )偏( )( )°方向( )米处。金城花苑大约在三井小学( )偏( )( )°方向的( )米处。


以三井小学为观测点,算一算,填一填。
基础练习

500
40
750
西
30





东方超市
三井小学
兴业苑

法院


40°
60°

N
比例尺: 1:25000


金城花苑
旺角花园



太湖路


飞机场















45°
45°
农场
商场
新兴小区
医院
体育馆
明慧园
汽车站
火车站
1.6路汽车从火车站到
医院的行驶路线是:向____行
驶____站,再向_________行驶
____站到体育馆,再向_____
行驶___站到医院。

2.从飞机场到明慧园的行驶
路线是:向___行驶___站到
商场,再向_____行驶____站
到体育馆,再向__________行驶___站到明慧园。
看图填空。
西

1
北偏东45°
2

1
2

3
西偏南45°
1
基础练习
确定位置的方法很多,飞机的座位常用一个数字和一个英文字母标示,如下图中蓝色方块所示的座位号是14B。

14B
巩固与应用
地图上经纬线标示地理位置,我国有的城市用“经××纬××”标示街道。
北京位于北纬39°26′,东经116°20′。
巩固与应用
中国在地球上的位置示意图
这节课你有什么收获?还有什么疑问吗?

课堂小结
谢 谢 观 看!