分数加减混合运算
学习内容:
教科书64页例1,试一试,议一议,练习十九第1——3题。
学习目的:
1、结合具体的情境,理解并掌握分数加减混合运算的运算顺序,能正确的进行计算;认识带分数。
2、会用分数加减法灵活解决混合运算中的问题,提高应用能力。
3、让学生积极参与数学学习,获得成功的体验,建立信心。
学习重、难点:
掌握分数加减混合运算的运算顺序,能正确的计算分数加减法混合运算。
学习过程:
一:课前独学
1、口算
+
-
+
+
-
-
-
1-
2、计算下面各题
81+24-15
90-36+27
说一说运输顺序是怎样的?
二、探索新知
1、出示例1的情境图
三个小组用酒精做实验,实验完成后各组剩的酒精如下:
第一组瓶
第二组瓶
第三组瓶
一共剩多少瓶酒精?
学生根据问题列式。学生可能会出现下面这些算式:
++
+
+
+
+
肯定学生的算式,并让学生思考该怎样算。
学生独立完成自己的列式计算后组内交流,再全班交流计算方法。
方法一:先全部通分,再计算。
++
=++(按照整数加减混合运算的顺序从左往右依次计算)
=+
=
(约分)
=(瓶)
方法二:学生列式为+
+
的计算方法
+
+
=1+(按照整数加减混合运算的顺序从左往右依次计算)
=1
(瓶)
(1+可记为1,它和是相等的。)
(像1这样由整数和真分数合并而成的分数是带分数)
让学生观察不同的算法,比较异同点。
2、试一试
++
--
-+
学生独立完成3个小题后,再全班交流运算顺序及结果。
3、议一议:分数加减法混合运算的运算顺序是怎样的?
组内议一议再全班交流。
三、达标检测
计算下面各题
+-
+-
-(-)
-(+)
学生独立完成后组内交流算法及结果,再全班交流算法及结果。
四、课堂小结
课后作业:练习十九第2、3题。
第二课时
分数加减混合运算(二)
学习内容:
教科书第65页例2、例3,第66页的试一试、课堂活动,练习十九第4——7题。
学习目的:
1、在具体的情境中理解整数加减法运算定律(性质)在分数加减法中同样适用的道理。
2、计算分数加减法时,能根据具体的数据,选择合理的算法,使一些计算简便,从而培养学生的观察、分析能力和思维的灵活性。
3、感受运用数学知识可以解决一些生活中的实际问题,增强应用意识。
学习重、难点:
计算分数加减法时,能根据具体的数据,选择合理的算法,使一些计算简便。
学习过程:
一、课前热身
下面各等式应用了什么运算定律,运用它们有什么作用?
165-54-46=165-(54+46)
(79+765)+35=79+(765+35)
10.8+2.6-0.8=10.8-0.8+2.6
35.6+18+0.4=18+(35.6+0.4)
加法交换律、结合律、减法的运算性质适用于整数、小数,对于分数是否同样适用呢?这节课我们就来研究这个问题。
二、探究新知
1、学习例2
例2、打扫卫生。
全班同学中,擦门窗的占,擦桌子的占,其余的扫地。扫地的同学占全班同学的几分之几?
(1)同学们在列式中遇见什么问题?
预设1:全班同学该怎样表示?(把全班同学看作单位“1”。)
预设2:把全班同学看作单位“1”,因为擦门窗的占,擦桌子的占,是把全班同学看作单位“1”的。
(2)应怎样列式呢?为是么?
①1--
②1-(+)
这个算式中的“1”怎样处理呢?
1--
=--(“1”要先减,所以把“1”看成)
=-
=
1-(+)
=1-
=-(把“1”看成)
=
答:扫地的占全班同学的。
(如果学生在小组学习中能解决,就让学生解决后上台展示)
2、这两种解法有什么不同?
从运算顺序看,算式①是从左往右,依次计算,算式②是先算小括号里的,再算括号外边的。
从结果上看,这两个算式是相等的,因为一个数连续减去两个数,等于这个数减去这两个数的和。
巩固练习:计算(怎样简便怎样计算)
--
-(+)
--
3、学习例3
例3、种果树的面积占这片山地面积的几分之几?
这片山地面积的种梨树,种桃树,种枇杷。
其余的都种花草。
学生独立列出算式:++。
学生尝试计算,师巡视,辅导学困生。
展示:
(1)
++
=++(先通分,再计算)
=
(2)++
=++(先把同分母分数相加)
=+
=
两种算法结果一样的,在这里应用了什么定律?这说明那什么?
4、小结:整数加减法的运算定律对于分数同样适用,今天我们学习的就是“分数加减混合运算中的简便计算”
5、“试一试”
学生独立完成66页“试一试”然后再小组内交流算法,再全班交流。教师巡视,加入到小组的交流中,发现问题及时解决。
三、课堂活动
1、课堂活动第1题
学生先独立完成,再全班交流计算中遇见的问题。
(1)1--
这道题的结果是,就是等于0,因为分子是0的分数等于0。
(2)-+
这道题在计算中有人可能会这样算
-+
=-(+)
①对于这样的问题老师要引导学生比较“-+”和“--”它们有什么不同?从而知道“-+
=-(+)”是错误的。
②引导学生把-+用加法结合律变化成+-
即:
-+
=+-
=+(-)
=+
=
2、课堂活动第2题
学生独立完成后,全班交流怎样简便?计算的依据是什么?
课后作业:练习十九第4——7题。
第三课时
分数加减混合运算(三)
学习内容:
教科书66页练习十九第8——10题
学习目的:
1、通过练习,提高学生对分数加减混合运算的计算能力。
2、通过练习,让学生正确进行分数加减混合运算的简便计算。
3、让学生能用所学知识解决生活中的实际问题,提高应用意识。
学习重、难点:
通过练习,提高学生对分数加减混合运算的计算能力,能用所学知识解决生活中的实际问题。
学习过程:
一、课前热身
说一说在本小节的学习中你学到了哪些知识。
1、同分母的分数加减法(计算方法是什么?举例说明)
2、异分母的分数加减法(计算方法是什么?举例说明)
3、分数加减混合运算(运算顺序是什么?)
4、简便计算。
二、练习
1、直接写出得数
+
+
-
-
1-
+
2、练习十九第8题。
能简算的要简算,运用加法的运算定律,使计算简便。
学生独立完成后,再板书计算过程,并说一说简算的依据是什么?
3、练习十九第9题
出示情境图,学生说一说从中获得那些数学信息。本题中单位“1“是什么?“这3条恐龙的体长总和是这条峨眉龙的几分之几?”这句话是什么意思?
++=
4、练习十九第10题
学生独立完成后在小组内交流算法,教师巡视,个别辅导。
5、思考题
此题的突破口在于一、二、三等奖合起来是“1”。即(一)+(二)+(三)=1——(A)
而另外两个条件可以表示为:(一)+(二)=
(甲)
(二)+(三)=(乙)
(1)A算式的左边比甲算式的左边多了一个(三),右边比1多了,所以三等奖占获奖总人数的;
(2)用同样的方法一等奖占获奖总人数的。
(3)二等奖是1--=,所以二等奖占获奖总人数的
三、提问
学生针对自己在学习中存在的疑惑、问题等提出问题,教师帮组解决。