人教版七年级数学下册 第八章 二元一次方程组 知识点梳理+测评卷
二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
代入消元法解二元一次方程组:
基本思路:未知数又多变少。
消元法的基本方法:将二元一次方程组转化为一元一次方程。
代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这个方法叫做代入消元法,简称代入法。
代入法解二元一次方程组的一般步骤:
从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”
将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
解出这个一元一次方程,求出x的值,即“解”。
把求得的x值代入y=ax+b中求出y的值,即“回代”
把x、y的值用{联立起来即“联”
加减消元法解二元一次方程组
两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的解
方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。
把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。
解这个一元一次方程,求得一个未煮熟的值,即“解”。
将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”。
把求得的两个未知数的值用{联立起来,即“联”。
二元一次方程组应用题
一、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
找:找出能够表示题意两个相等关系;
列:根据这两个相等关系列出必需的代数式,从而列出方程组;
解:解这个方程组,求出两个未知数的值;
答:在对求出的方程的解做出是否合理判断的基础上,写出答案
一、选择题(每小题3分,共24分)
1.方程2x-=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是( )
A.1个 B.2个 C.3个 D.4个
2.二元一次方程组的解是( )
A.
3.关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值是( )
A.k=- B.k= C.k= D.k=-
4.如果方程组 HYPERLINK "http://www.czsx.com.cn" 有唯一的一组解,那么a,b,c的值应当满足( )
A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1
5.方程3x+y=7的正整数解的个数是( )
A.1个 B.2个 C.3个 D.4个
6.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是( )
A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=-9
7.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为( )
A.
8.若 HYPERLINK "http://www.czsx.com.cn" 的解,则(a+b)·(a-b)的值为( )
A.- B. C.-16 D.16
二、填空题(每小题3分,共24分)
9.写出一个解为的二元一次方程组__________.
10.若2x2a-5b+ya-3b=0是二元一次方程,则a=______,b=______.
11.若是关于a,b的二元一次方程ax+ay-b=7的一个解,
则代数式(x+y)2-1的值是_________.
12.a-b=2,a-c=3,则(b-c)3-3(b-c)+=________.
13.已知 HYPERLINK "http://www.czsx.com.cn" 都是ax+by=7的解,则a=_______,b=______.
14.若2x5ayb+4与-x1-2by2a是同类项,则b=________.
15.方程mx-2y=x+5是二元一次方程时,则m________.
16.方程组=4的解为________.
三、解答题
17.解方程组(每小题4分,共8分)
(1) HYPERLINK "http://www.czsx.com.cn"
18.已知y=3xy+x,求代数式 HYPERLINK "http://www.czsx.com.cn" 的值.(本小题5分)
19.已知方程组的解相同.求(2a+b)2020的值.
(本小题5分)
20.已知x=1是关于x的一元一次方程ax-1=2(x-b)的解,y=1是关于y的一元一次方程b(y-3)=2(1-a)的解.在y=ax2+bx-3中,求当x=-3时y值.
(本小题5分)
21.甲、乙两人同解方程组 HYPERLINK "http://www.czsx.com.cn" 时,甲看错了方程①中的a,解得,乙看错了②中的b,解得的值.(本小题5分)
22.某商场按定价销售某种电器 (?http:?/??/?www.czsx.com.cn?)时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?(本小题6分)
23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)
24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,二人继续前行,到12时又相距36km (?http:?/??/?www.czsx.com.cn?),已知甲每小时比乙多走2km,求A,B两地的距离.
(本小题6分)
25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:
(1)春游学生共多少人?原 (?http:?/??/?www.czsx.com.cn?)计划租45座客车多少辆?
(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?(本小题6分)
参考答案:
一、选择题
1.B 解析:②④是
2.C 解析:用加减法,直接相加即可消去y,求得x的值.
3.B 解析:解方程组可得x=7k,y=-2k,
然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6,
解得k=,故选B.
4.B
5.B 解析:正整数解为: HYPERLINK "http://www.czsx.com.cn"
6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.
7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,
所以有
8.C 解析:把x=-2,y=1代入原方程组得,
∴(a+b)(a-b)=-16.
二、填空题
9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,
由二元一次方程定义,得.
10.24 解析:把a=1,b=-2代入原方程可得x+y的值,
把a=1,b=-2代入ax+ay-b=7得x+y=5,因为x2+2xy+y2-1=(x+y)2-1,
所以原式=24.
11. HYPERLINK "http://www.czsx.com.cn" (答案不唯一).
12. 解析:由a-b=2,a-c=可得b-c=-,
再代入(b-c)3-3(b-c)+=.
13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程,
可得.
14.-2 解析:本题涉及同类项的概念:所含字母相同,相同 (?http:?/??/?www.czsx.com.cn?)字母的指数也相同,
由此可得5a=1-2b;b+4=2a,将两式联立组成方程组,
解出a,b的值,分别为a=1,b=-2,故ba=-2.
15.≠1
16. 即可.
三、解答题
17.解:(1) HYPERLINK "http://www.czsx.com.cn" ①×3得,6x-3y=15 ③
②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为.
(2)原方程组变为
①-②,得y=.将y=代入①,得5x+15×=6,x=0,
所以原方程组的解为.
18.解:因为y=3xy+x,所以x-y=-3xy.
当x-y=-3xy时,.
解析:首先根据已知条件得到x-y=-3xy,再把要求的代数式化简成含有x-y的式子,然后整体代入,使代数式中只含有xy,约分后得解.
19.解:因为两个方程组的解相同,所以解方程组 HYPERLINK "http://www.czsx.com.cn"
代入另两个方程得,∴原式=(2×1-3)2004=1.
20.解:将x=1,y=1分别代入方程得
所以原式=x2+x-3.当x=-3时,
原式=×(-3)2+×(-3)-3=15-2-3=10.
21.解:把代入方程②,得4×(-3)=b·(-1)-2,
解得b=10.把 HYPERLINK "http://www.czsx.com.cn"
代入方程①,得5a+5×4=15,解得a=-1,
所以a2006+=1+(-1)=0.
22.解:设该电器每台的进价为x元,定价为y元.
由题意得.
答:该电器每台的进价是162元,定价是210元.
解析:打九折是按定价的90%销售,利润=售价-进价.
23.解:设用xm3木料做桌面,ym3木料做桌腿.由题意,得
HYPERLINK "http://www.czsx.com.cn"
(2)6×50=300(张).答:用6m3木料做桌面,4m3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:
①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.
24.解:设A、B两地相距xkm,乙每小时走ykm,则甲每小时走(y+2)km.
根据题意,得.答:略.
25.解:(1)设参加春游的学生共x人,原计划租用45座客车y辆.
根据题意,得 .
答:春游学生共240人,原计划租45座客车5辆.
(2)租45座客车:240÷45≈5.3,所以需租6辆,租金为220×6=1320(元);租60座客车:240÷60=4,所以需租4辆,租金为300×4=1200(元).
所以租用4辆60座客车更合算.
解析:租车时最后一辆 (?http:?/??/?www.czsx.com.cn?)不管几个人都要用一辆,所以在计算车的辆数时用“收尾法”,而不是“四舍五入”.
①②
①②
①②