16.6 反冲运动 火箭
一 夯实基础
1.(2019·福建福州模拟)一质量为M的航天器,正以速度v0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v1,加速后航天器的速度大小为v2,则喷出气体的质量m为( )
A.m=M B.m=M
C.m=M D.m=M
【答案】:C
【解析】:规定航天器的速度方向为正方向,由动量守恒定律可得Mv0=(M-m)v2-mv1,解得m=M,故C正确.
2.关于反冲运动的说法中,正确的是( )
A.抛出物m1的质量要小于剩下质量m2才能获得反冲
B.若抛出质量m1大于剩下的质量m2,则m2的反冲力大于m1所受的力
C.反冲运动中,牛顿第三定律适用,但牛顿第二定律不适用
D.抛出部分和剩余部分都适用于牛顿第二定律
【答案】 D
【解析】 反冲运动的定义为由于系统的一部分物体向某一方向运动,而使另一部分向相反方向运动,这种现象叫反冲运动.定义中并没有确定两部分物体之间的质量关系,故选项A错误.在反冲运动中,两部分之间的作用力是一对作用力与反作用力,由牛顿第三定律可知,它们大小相等,方向相反,故选项B错误.在反冲运动中一部分受到的另一部分的作用力产生了该部分的加速度,使该部分的速度逐渐增大,在此过程中对每一部分牛顿第二定律都成立,故选项C错误,选项D正确.
3.如图所示,具有一定质量的小球A固定在轻杆一端,另一端挂在小车支架的O点.用手将小球拉至水平,此时小车静止于光滑水平面上,放手让小球摆下与B处固定的橡皮泥碰击后粘在一起,则在此过程中小车将( )
A.向右运动 B.向左运动
C.静止不动 D.小球下摆时,车向左运动后又静止
【答案】D
【解析】水平方向上,系统不受外力,因此在水平方向上动量守恒.小球下落过程中,水平方向具有向右的分速度,因此为保证动量守恒,小车要向左运动.当撞到橡皮泥,是完全非弹性碰撞,A球和小车大小相等、方向相反的动量恰好抵消掉,小车会静止.
4.小车上装有一桶水,静止在光滑水平地面上,如图所示,桶的前、后、底及侧面各装有一个阀门,分别为S1、S2、S3、S4(图中未全画出).要使小车向前运动,可采用的方法是( )
A.打开阀门S1 B.打开阀门S2
C.打开阀门S3 D.打开阀门S4
【答案】 B
【解析】 根据反冲特点,当阀门S2打开时,小车将受到向前的推力,从而向前运动,故B项正确,A、C、D均错误.
5.(多选)向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则( )
A.b的速度方向一定与原速度方向相反
B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大
C.a、b一定同时到达水平地面
D.在炸裂过程中,a、b受到的力大小一定相等
【答案】 CD
【解析】 爆炸后系统的总机械能增加,但不能确定a、b两块的速度大小及b块的速度方向,所以A、B不能确定;因炸开后两者都做平抛运动,且高度相同,故C对;由牛顿第三定律知D对.
6.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为( )
v0+ v B.v0- v
C.v0+(v0+v) D.v0+(v0-v)
【答案】C
【解析】根据动量守恒定律,选向右方向为正方向,则有(M+m)v0=Mv′-mv,解得v′=v0+(v0+v),C正确。
7.(多选)采取下列哪些措施有利于增加火箭的飞行速度( )
A.使喷出的气体速度更大 B.使喷出的气体温度更高
C.使喷出的气体质量更大 D.使喷出的气体密度更小
【答案】 AC
【解析】 设原来的总质量为M,喷出的气体质量为m,速度是v,剩余的质量(M-m)的速度是v′,由动量守恒得出:(M-m)v′=mv得:v′=,由上式可知:m越大,v越大,v′越大.故A、C正确.
8.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )
A.v0 B.v0 C.v0 D.v0
【答案】 D
【解析】 火箭模型在极短时间点火,设火箭模型获得速度为v,规定竖直向上为正方向,据动量守恒定律有0=(M-m)v-mv0,得v=v0,故选D.
9.(多选)某同学想用气垫导轨模拟“人船模型”.该同学到实验室里,将一质量为M、长为L的滑块置于水平气垫导轨上(不计摩擦)并接通电源.该同学又找来一个质量为m的蜗牛置于滑块的一端,在食物的诱惑下,蜗牛从该端移动到另一端.下面说法正确的是( )
A.只有蜗牛运动,滑块不运动 B.滑块运动的距离是L
C.蜗牛运动的位移是滑块的倍 D.滑块与蜗牛运动的距离之和为L
【答案】 CD
【解析】 根据“人船模型”,易得滑块的位移为L,蜗牛运动的位移为L,C、D正确.
10.课外科技小组制作一只“水火箭”,用压缩空气压出水流使火箭运动.假如喷出的水流流量保持为2×10-4 m3/s,喷出速度保持为对地10 m/s.启动前火箭总质量为1.4 kg,则启动2 s末火箭的速度可以达到多少?(已知火箭沿水平轨道运动且阻力不计,水的密度是103 kg/m3)
【答案】 4 m/s
【解析】 “水火箭”喷出水流做反冲运动,设火箭原来总质量为M,喷出水流的流量为Q,水的密度为ρ,水流的喷出速度为v,火箭的反冲速度为v′,由动量守恒定律得(M-ρQt)v′=ρQtv,火箭启动后2 s末的速度为v′== m/s=4 m/s.
二 提升训练
1.A、B两船的质量均为m,都静止在平静的湖面上,现A船中质量为m的人,以对地的水平速度v从A船跳到B船,再从B船跳到A船……经n次跳跃后,人停在B船上,不计水的阻力,则( )
A.A、B两船速度大小之比为2∶3 B.A、B(包括人)两船动量大小之比为1∶1
C.A、B(包括人)两船的动能之比为2∶3 D.A、B(包括人)两船的动能之比为1∶1
【答案】:B
【解析】:人和两船组成的系统动量守恒,两船原来静止,总动量为0,A、B(包括人)两船的动量大小相等,选项B正确;经过n次跳跃后,A船速度为vA、B船速度为vB,则0=mvA-(m+)vB,解得=,选项A错误;A船最后获得的动能为EkA=mvA2,B船(包括人)最后获得的动能为EkB=(+m)vB2=(+m)(vA)2=EkA,所以=,选项C、D错误.
2.(2019·山东寿光模拟)如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端,当两人同时相向运动时 ( )
A.若小车不动,两人速率一定相等 B.若小车向左运动,A的动量一定比B的小
C.若小车向左运动,A的动量一定比B的大 D.若小车向右运动,A的动量一定比B的大
【答案】:C
【解析】:A、B两人及小车组成的系统所受合外力为零,系统动量守恒,根据动量守恒定律得mAvA+mBvB+m车v车=0,若小车不动,则mAvA+mBvB=0,由于不知道A、B质量的关系,所以两人速率不一定相等,故A错误;若小车向左运动,则A、B的动量和必须向右,而A向右运动,B向左运动,所以A的动量一定比B的大,故B错误,C正确;若小车向右运动,则A、B的动量和必须向左,而A向右运动,B向左运动,所以A的动量一定比B的小,故D错误.
3.如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,AB总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时AB和C都静止,当突然烧断细绳时,C被释放,C离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,下列说法正确的是( )
A.弹簧伸长过程中C向右运动,同时AB也向右运动 B.C与B碰前,C与AB的速率之比为M∶m
C.C与油泥粘在一起后,AB立即停止运动 D.C与油泥粘在一起后,AB继续向右运动
【答案】:BC
【解析】:AB与C组成的系统在水平方向上动量守恒,C向右运动时,AB应向左运动,故A错误;设碰前C的速率为v1,AB的速率为v2,则0=mv1-Mv2,得=,故B正确;设C与油泥粘在一起后,AB、C的共同速度为v共,则0=(M+m)v共,得v共=0,故C正确,D错误.
4.质量为m的人站在质量为2m的平板小车上,以共同的速度在水平地面上沿直线前行,车所受地面阻力的大小与车对地面压力的大小成正比.当车速为v0时,人从车上以相对于地面大小为v0的速度水平向后跳下.跳离瞬间地面阻力的冲量忽略不计,则能正确表示车运动的v-t图象为( )
【答案】 B
【解析】 人和车以共同的速度在水平地面上沿直线前行,做匀减速直线运动,当车速度为v0时,人从车上以相对于地面大小为v0的速度水平向后跳下,跳离前后系统动量守恒,规定车的速度方向为正方向,则有(m+2m)v0=2mv+(-mv0),得v=2v0,人跳车后小车做匀减速直线运动,车所受地面阻力的大小与车对地面压力的大小成正比,所以人跳车前后,车的加速度不变,所以能正确表示车运动v-t图象的是B.
5.(多选)一气球由地面匀速上升,当气球下的吊梯上站着的人沿着梯子上爬时,下列说法正确的是( )
A.气球可能匀速上升 B.气球可能相对地面静止 C.气球可能下降 D.气球运动速度不发生变化
【答案】 ABC
【解析】 设气球质量为M,人的质量为m,由于气球匀速上升,系统所受的外力之和为零,当人沿吊梯向上爬时,动量守恒,以向上为正方向,则(M+m)v0=mv1+Mv2,在人向上爬的过程中,气球的速度为v2=.当v2>0时,气球可匀速上升;当v2=0时,气球静止;当v2<0时,气球下降.所以选项A、B、C均正确;要使气球运动速度不变,则人的速度仍为v0,即人不上爬,显然不对,D选项错误.
6.如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,顶端高度为h,今有一质量为m的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )
A. B. C. D.
【答案】 C
【解析】 此题属于“人船模型”问题,m与M组成的系统在水平方向上动量守恒,以m在水平方向上对地位移的方向为正方向,设m在水平方向上对地位移为x1,M在水平方向对地位移为x2,因此0=mx1-Mx2.①
且x1+x2=.②
由①②可得x2= ,故选C.
7.一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g取10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是( )
【答案】:B
【解析】:平抛运动时间t==1 s,爆炸过程遵循动量守恒定律,设弹丸质量为m,则mv=mv甲+mv乙,又因为v甲=,v乙=,t=1 s,则有x甲+x乙=2 m,将各选项中数据代入计算得B正确.
8.(2019·江苏苏北三市高三二期末)一枚在空中飞行的炮弹,质量M=6 kg,在最高点时的速度v0=900 m/s,炮弹在该点突然炸裂成A、B两块,其中质量m=2 kg的B做自由落体运动.求:
(1)爆炸后A的速度大小;
(2)爆炸过程中A受到的冲量大小.
【答案】:(1)1 350 m/s (2)1 800 N·s
【解析】:(1)炮弹爆炸过程系统动量守恒,以炮弹的初速度方向为正方向
根据动量守恒定律有Mv0=(M-m)vA
解得vA=1 350 m/s,方向与初速度方向相同.
(2)根据动量定理可知A的冲量为I=Δp=(M-m)·(vA-v0)=1 800 N·s,方向与初速度方向相同.
9. 如图所示,带有光滑的半径为R的圆弧轨道的滑块静止在光滑水平面上,滑块的质量为M,将一个质量为m的小球从A处由静止释放,当小球从B点水平飞出时,滑块的速度为多大?(重力加速度为g)
【答案】 m
【解析】 运动过程中小球和滑块组成的系统机械能守恒,又因为系统在水平方向不受外力,故系统水平方向动量守恒,设小球从B点飞出时速度大小为v1,滑块的速度大小为v2,以v1的方向为正方向,则有:mv1-Mv2=0,mgR=mv12+Mv22,解得v2=m.
10.平板车停在水平光滑的轨道上,平板车上有一人从固定在车上的货箱边沿水平方向顺着轨道方向跳出,落在平板车地板上的A点,A点距货箱水平距离为l=4 m,如图所示.人的质量为m,车连同货箱的质量为M=4m,货箱高度为h=1.25 m.求车在人跳出后到落到地板前的反冲速度为多大(g取10 m/s2).
【答案】 1.6 m/s
【解析】 人从货箱边跳离的过程,系统(人、车和货箱)水平方向动量守恒,设人的水平速度是v1,车的反冲速度是v2,取向右为正方向,则mv1-Mv2=0,解得v2=v1
人跳离货箱后做平抛运动,车以v2做匀速运动,运动时间为t== s=0.5 s.由图可知,在这段时间内人的水平位移x1和车的位移x2分别为
x1=v1t,x2=v2t,x1+x2=l
即v1t+v2t=l,
则v2== m/s=1.6 m/s.
16.6 反冲运动 火箭
一 夯实基础
1.(2019·福建福州模拟)一质量为M的航天器,正以速度v0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v1,加速后航天器的速度大小为v2,则喷出气体的质量m为( )
A.m=M B.m=M
C.m=M D.m=M
2.关于反冲运动的说法中,正确的是( )
A.抛出物m1的质量要小于剩下质量m2才能获得反冲
B.若抛出质量m1大于剩下的质量m2,则m2的反冲力大于m1所受的力
C.反冲运动中,牛顿第三定律适用,但牛顿第二定律不适用
D.抛出部分和剩余部分都适用于牛顿第二定律
3.如图所示,具有一定质量的小球A固定在轻杆一端,另一端挂在小车支架的O点.用手将小球拉至水平,此时小车静止于光滑水平面上,放手让小球摆下与B处固定的橡皮泥碰击后粘在一起,则在此过程中小车将( )
A.向右运动 B.向左运动
C.静止不动 D.小球下摆时,车向左运动后又静止
4.小车上装有一桶水,静止在光滑水平地面上,如图所示,桶的前、后、底及侧面各装有一个阀门,分别为S1、S2、S3、S4(图中未全画出).要使小车向前运动,可采用的方法是( )
A.打开阀门S1 B.打开阀门S2
C.打开阀门S3 D.打开阀门S4
5.(多选)向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则( )
A.b的速度方向一定与原速度方向相反
B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大
C.a、b一定同时到达水平地面
D.在炸裂过程中,a、b受到的力大小一定相等
6.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为( )
v0+ v B.v0- v
C.v0+(v0+v) D.v0+(v0-v)
7.(多选)采取下列哪些措施有利于增加火箭的飞行速度( )
A.使喷出的气体速度更大 B.使喷出的气体温度更高
C.使喷出的气体质量更大 D.使喷出的气体密度更小
8.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )
A.v0 B.v0 C.v0 D.v0
9.(多选)某同学想用气垫导轨模拟“人船模型”.该同学到实验室里,将一质量为M、长为L的滑块置于水平气垫导轨上(不计摩擦)并接通电源.该同学又找来一个质量为m的蜗牛置于滑块的一端,在食物的诱惑下,蜗牛从该端移动到另一端.下面说法正确的是( )
A.只有蜗牛运动,滑块不运动 B.滑块运动的距离是L
C.蜗牛运动的位移是滑块的倍 D.滑块与蜗牛运动的距离之和为L
10.课外科技小组制作一只“水火箭”,用压缩空气压出水流使火箭运动.假如喷出的水流流量保持为2×10-4 m3/s,喷出速度保持为对地10 m/s.启动前火箭总质量为1.4 kg,则启动2 s末火箭的速度可以达到多少?(已知火箭沿水平轨道运动且阻力不计,水的密度是103 kg/m3)
二 提升训练
1.A、B两船的质量均为m,都静止在平静的湖面上,现A船中质量为m的人,以对地的水平速度v从A船跳到B船,再从B船跳到A船……经n次跳跃后,人停在B船上,不计水的阻力,则( )
A.A、B两船速度大小之比为2∶3 B.A、B(包括人)两船动量大小之比为1∶1
C.A、B(包括人)两船的动能之比为2∶3 D.A、B(包括人)两船的动能之比为1∶1
2.(2019·山东寿光模拟)如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端,当两人同时相向运动时 ( )
A.若小车不动,两人速率一定相等 B.若小车向左运动,A的动量一定比B的小
C.若小车向左运动,A的动量一定比B的大 D.若小车向右运动,A的动量一定比B的大
3.如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,AB总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时AB和C都静止,当突然烧断细绳时,C被释放,C离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,下列说法正确的是( )
A.弹簧伸长过程中C向右运动,同时AB也向右运动 B.C与B碰前,C与AB的速率之比为M∶m
C.C与油泥粘在一起后,AB立即停止运动 D.C与油泥粘在一起后,AB继续向右运动
4.质量为m的人站在质量为2m的平板小车上,以共同的速度在水平地面上沿直线前行,车所受地面阻力的大小与车对地面压力的大小成正比.当车速为v0时,人从车上以相对于地面大小为v0的速度水平向后跳下.跳离瞬间地面阻力的冲量忽略不计,则能正确表示车运动的v-t图象为( )
5.(多选)一气球由地面匀速上升,当气球下的吊梯上站着的人沿着梯子上爬时,下列说法正确的是( )
A.气球可能匀速上升 B.气球可能相对地面静止 C.气球可能下降 D.气球运动速度不发生变化
6.如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,顶端高度为h,今有一质量为m的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )
A. B.
C. D.
7.一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,重力加速度g取10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是( )
8.(2019·江苏苏北三市高三二期末)一枚在空中飞行的炮弹,质量M=6 kg,在最高点时的速度v0=900 m/s,炮弹在该点突然炸裂成A、B两块,其中质量m=2 kg的B做自由落体运动.求:
(1)爆炸后A的速度大小;
(2)爆炸过程中A受到的冲量大小.
9. 如图所示,带有光滑的半径为R的圆弧轨道的滑块静止在光滑水平面上,滑块的质量为M,将一个质量为m的小球从A处由静止释放,当小球从B点水平飞出时,滑块的速度为多大?(重力加速度为g)
10.平板车停在水平光滑的轨道上,平板车上有一人从固定在车上的货箱边沿水平方向顺着轨道方向跳出,落在平板车地板上的A点,A点距货箱水平距离为l=4 m,如图所示.人的质量为m,车连同货箱的质量为M=4m,货箱高度为h=1.25 m.求车在人跳出后到落到地板前的反冲速度为多大(g取10 m/s2).