第七章 平面直角坐标系
7.2.2 用坐标表示平移
一、选择题
1、如图,如果将三角形ABC向左平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )
A.(5,1) B.(1,1)
C.(7,1) D.(3,3)
2、如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为( )
A.(4,3) B.(2,4)
C.(3,1) D.(2,5)
3、将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比( )
A.向右平移了3个单位 B. 向左平移了3个单位 C. 向上平移了3个单位 D. 向下平移了3个单位
4、把点P1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P2处,则P2的坐标是( )
A.(5,-1) B.(-1,-5) C.(5,-5) D.(-1,-1)
5、在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )
A.(1.4,-1) B.(1.5,2) C.(-1.6,-1) D.(2.4,1)
填空题
6、线段CD是由线段AB平移得到的。点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为
7、如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为 .
8、在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′(点A’与点A对应).若点A′的坐标为(-2,2),则点B′的坐标为__________.
9、△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3)将其平移到点A′(-1,-2)处,使A与A′重合,则B′、C′两点坐标分别为 , .
10、点P(-5,1)沿x轴正方向平移2个单位,在沿y轴负方向平移4个单位所得的点的坐标为 。
三、解答题
11、在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.
(1)图中格点三角形A′B′C′是由格点三角形ABC通过怎样的变换得到的?
(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.
12、如图
(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标。
(2)源源想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标。
13、如图:铅笔图案的五个顶点的坐标分别是(0,1) (4,1) (5,1.5) (4,2) (0,2)将图案向下平移2个单位长度,作出相应图案,并写出平移后相应各点的坐标。
14、如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).
(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;
(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.
15、如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,.B 的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;
(2)在y轴上是否存在一点P,连接PA,PB,使S三角形PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.
16、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,点A,B,C均在格点上.
??(1)请值接写出点A,B,C的坐标;
??(2)若平移线段AB,使B移动到C的位置,请在图中画出A移动后的位置D,依次连接B,C,D,A,并求出四边形ABCD的面积.
17、如图将图中的点(一5,2)(一3,3)(一1,2)(一4,2)(一2,2)(一2,0)(一4,0)做如下变化:
(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?
(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?
18、如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.
参考答案:
一、1、B 2、D 3、A 4、C 5、C
二、6、(1,2)
7、.(1008,0)
8、(-5,4)
9、(-3,-6)(-4,-1)
10、(-3,-3)
三、11、解:(1)图中格点三角形A′B′C′是由格点三角形ABC向右平移7个单位长度得到的.
(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),
E(-4,-4),F(3,-3).
S三角形DEF=7×2-×4×2-×7×1-×3×1=14-4--=5.
12、略
13、(0,-1),(2,1),(3,1.5),(,2,2)(-2,2).
14、解:(1)三角形ABC向下平移7个单位得到三角形A1B1C1.A1(-3,-3),B1(-4,-6),C1(-1,-5).
(2)三角形ABC向右平移6个单位,再向下平移3个单位得到三角形A2B2C2.A2(3,1),B2(2,-2),C2(5,-1).
15、解:(1)C(0,2),D(4,2),四边形ABCD的面积=(3+1)×2=8.
(2)假设y轴上存在P(0,b)点,则S三角形PAB=S四边形ABDC∴|AB|?|b|=8,∴b=±4,∴P(0,4)或P(0,﹣4).
16、解:(1)A(-1,2),B(-2,1),C(2,1).
(2)图略,四边形ABCD的面积是4×3=12.
17、(1)所得的图形与原来的图形相比向下平移了4个单位长度.(2)所得的图形与原来的图形相比向右平移了6个单位长度
18、解:易知AB=6,A′B′=3,
∴a=.
由(-3)×+m=-1,得
m=.
由0×+n=2,得n=2.
设F(x,y),变换后F′(ax+m,ay+n).
∵F与F′重合,
∴ax+m=x,ay+n=y.
∴x+=x,y+2=y.
解得x=1,y=4.∴点F的坐标为(1,4).