第十八章 平行四边形
18.2.2 菱形
一、选择题
1、菱形具有而一般平行四边形不具有的性质是( )
A. 对角相等 B. 对边相等
C. 对角线互相垂直 D. 对角线相等
2、下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是菱形
B.有一组邻边相等的平行四边形是菱形
C.对角线互相平分且相等的四边形是菱形
D.对角线相等的四边形是菱形
3、如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为( )
A.15 B. C.7.5 D.
4、能够判别一个四边形是菱形的条件是( )
A. 对角线相等且互相平分
B. 对角线互相垂直且相等
C. 对角线互相平分
D. 一组对角相等且一条对角线平分这组对角
5、四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有( ).
A.1种 B.2种 C.3种 D.4种
填空题
6、已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.
7、如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是 .
第7题图 第8题图
8、如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为 .
9、如图所示,已知平行四边形ABCD,AC,BD相交于点O,添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)
10、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P点坐标为 .
三、解答题
11、在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:
(1)两条对角线的长度;(2)菱形的面积.
12、∠如图,在菱形ABCD中,AE⊥BC,E为垂足.且BE=CE,AB=2.求:
(1)BAD的度数;
(2)对角线AC的长及菱形ABCD的周长.
13、如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.
求证:DE=BE.
14、如图,□ABCD的对角线AC的垂直平分线与AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?
15、如图所示,在四边形ABCD中,AB∥CD,AB=CD=BC,四边形ABCD是菱形吗?说明理由.
16、如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
17、如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F,连接CD.
(1)求证:四边形BCFE是菱形;
(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).
18、如图,已知平行四边形ABCD的两条对角线相交于点O,E是BO的中点,过B点作AC的平行线,交CE的延长线于点F,连接BF
(1)求证:FB=AO;
(2)当平行四边形ABCD满足什么条件时,四边形AFBO是菱形?说明理由.
参考答案:
一、1、C 2、B 3、A 4、D 5、D
二、6、24;
7、
8、60
9、AB=BC 点拨:还可添加AC⊥BD或∠ABD=∠CBD等.
10、(0,0)(0,4)
三、11、【答案】 (1)BD=12cm,AC=12cm (2)S菱形ABCD=72cm2
12、解:(1)∵AE⊥BC,且BE=CE,∴△ABC为等边三角形 ,∠B=∠D=60°,
∴∠BAD=∠BCD=120°.
(2)AC=AB=2,周长为:4×2=8.
13、考点:菱形的性质。
专题:证明题。
分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由直角三角形斜边上的中线等于斜边的一半,即可证得DE=BE.
解答:证明:
法一:如右图,连接BD,
∵四边形ABCD是菱形,∠ABC=60°,
∴BD⊥AC,∠DBC=30°,
∵DE∥AC,
∴DE⊥BD,
即∠BDE=90°,
∴DE=BE.
法二:∵四边形ABCD是菱形,∠ABC=60°,
∴AD∥BC,AC=AD,
∵AC∥DE,
∴四边形ACED是菱形,
∴DE=CE=AC=AD,
又四边形ABCD是菱形,
∴AD=AB=BC=CD,
∴BC=EC=DE,即C为BE中点,
∴DE=BC=BE.
点评:此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.
【答案】□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC
15、解:四边形ABCD是菱形,因为四边形ABCD中,AB∥CD,且AB=CD,
所以四边形ABCD是平行四边形,又因为AB=BC,所以ABCD是菱形.
点拨:根据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.
16、分析:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;
(2)先根据已知中的两组平行线,可证四边形DEFA是?,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AF=DF,从而可证?AEDF实菱形.
解答:证明:(1)∵DE∥AC,∠ADE=∠DAF,
同理∠DAE=∠FDA,
∵AD=DA,
∴△ADE≌△DAF,
∴AE=DF;
(2)若AD平分∠BAC,四边形AEDF是菱形,
∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴∠DAF=∠FDA.
∴AF=DF.
∴平行四边形AEDF为菱形.
点评:考查了全等三角形的判定方法及菱形的判定的掌握情况.
17、(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE.
∵CF∥BE,∴四边形BCFE是平行四边形.
∵BE=2DE,BC=2DE,∴BE=BC.∴?BCFE是菱形;
(2)解:①∵由(1)知,四变形BCFE是菱形,∴BC=FE,BC∥EF,
∴△FEC与△BEC是等底等高的两个三角形,∴S△FEC=S△BEC.
②△AEB与△BEC是等底同高的两个三角形,则S△AEB=S△BEC.
③S△ADC=S△ABC,S△BEC=S△ABC,则它S△ADC=S△BEC.
④S△BDC=S△ABC,S△BEC=S△ABC,则它S△BDC=S△BEC.
综上所述,与△BEC面积相等的三角形有:△FEC、△AEB、△ADC、△BDC.
19、证明:(1)如图,取BC的中点G,连接EG.
∵E是BO的中点,∴EG是△BFC的中位线,∴EG=0.5BF.同理,EG=0.5OC,∴BF=OC.
又∵点O是?ABCD的对角线交点,∴AO=CO,∴BF=AO.
又∵BF∥AC,即BF∥AO,∴四边形AOBF为平行四边形,∴FB=AO;
(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:
∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.