第十九章 变量与函数
19.3 课题学习 选择方案
一、选择题
1、某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算(?? ).
?A.计时制????B.包月制???C.两种一样??? D.不确定
2、甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )
①②③ B. ①②
C. ①③ D. ②③
3、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
4、在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )
A.这次比赛的全程是500米
B.乙队先到达终点
C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快
D.乙与甲相遇时乙的速度是375米/分钟
5、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是(??? ).
A.①②③④??? B.①③④????? C.①②④????? D.①②③
填空题
6、A,B两地之间的路程为2380米,甲、乙两人分别从A,B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A,B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是________米.
第6题图 第10题图
7、关于的一次函数的图像与y轴的交点在轴的上方,则y随的增大而减小,则a的取值范围是 。
8、为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y与该排排数x之间的函数关系式为____(x为1≤x≤60的整数)
9、一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是 .
10、为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y(元)与用水量x(吨)之间的函数关系如上图.按上述分段收费标准,小明家三、四月份分别交水费26元和18元,则四月份比三月份节约用水 吨.
三、解答题
11、已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
12、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送152箱鱼苗到A,B两村养殖.若用大、小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大、小货车的载货能力分别为12箱/辆和8箱/辆,其运往A.B两村的运费如下表:
目的地车型 A村(元/辆) B村(元/辆)
大货车 800 900
小货车 400 600
(1)这15辆车中大、小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A.B两村总费用为y元,试求出y与x的函数表达式;
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
13、在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.
根据图象信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由.
(2)求返程中y与x之间的函数表达式.
(3)求这辆汽车从甲地出发4 h时与甲地的距离.
14、某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
15、某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.
(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?
(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?
16、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该收割机租赁公司商定的每天的租赁价格表如下:
每台甲型收割机的租金 每台乙型收割机的租金
A地区 1800元 1600元
B地区 1600元 1200元
设派往A地区x台乙型收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
若使农机公司租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分配方案?
参考答案:
一、1、B 2、A 3、B 4、C 5、C
二、6、180
7、
8、y=39+x
9、m>﹣2
10、3
三、11、①y=50x+45(80-x)=5x+3600.
∵两种型号的时装共用A种布料[1.1x+0.6(80-x)]米,
共用B种布料[0.4x+0.9(80-x)]米,
∴ 解之得40≤x≤44,
而x为整数,
∴x=40,41,42,43,44,
∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);
②∵y随x的增大而增大,
∴当x=44时,y最大=3820,
即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.
12、解:(1)设大货车用x辆,小货车用y辆,根据题意得
答:大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+9400.(3≤x≤8,且x为整数).
(3)由题意得12x+8(10-x)≥100,解得x≥5,又∵3≤x≤8,∴5≤x≤8且为整数.∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).?
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村,最少运费为9900元.
13、解:(1)不同.理由如下:
因为往、返距离相等,去时用了2 h,而返回时用了2.5 h,所以往、返速度不同.
(2)设返程中y与x之间的函数表达式为y=kx+b,则解得∴y=-48x+240(2.5≤x≤5).
(3)当x=4时,汽车在返程中,∴y=-48×4+240=48.∴这辆汽车从甲地出发4 h时与甲地的距离为48 km.
14、(1),;
(2)当x>24整数时,选择优惠方法②,当x=24时,选择优惠方法①,②均可,当4≤x<24整数时,选择优惠方法①;(3)用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.
15、解:(1)设A种商品销售x 件,则B种商品销售(100-x)件.
依题意,得10x+15(100-x)=1350,
解得x=30。∴ 100- x =70。
答:A种商品销售30件,B种商品销售70件。
(2)设A种商品购进x 件,则B种商品购进(200-x)件。
依题意,得0≤ 200- x ≤3x,解得 50≤x≤200 。
设所获利润为w元,则有w=10x+15(200- x)= - 5x +3000 。
∵-5<0,∴w随x的增大而减小。
∴当x=50时,所获利润最大,最大利润为-50×50+30000=2750
200-x=150。
答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元。
16、解:(1)设派往A地区x台乙型收割机, 每天获得的租金为y元则,派往A地区(30-x)台甲型收割机,派往B地区(30-x)台乙型收割机,派往B地区(x-10)台甲型收割机,
所以:y=1600x+1200(30-x)+1800(30-x)+1600(x-10)
化简得y=200x+74000
(10≤x≤30)
(2)若使农机公司租赁公司这50台联合收割机一天获得的租金总额不低于79600元,则
200x+74000≥79600
解得x ≥28
由于10≤x≤30(x为正整数),所以x取28,29,30这三个值。
所以有三种不同的分配方案