中小学教育资源及组卷应用平台
2.2.2平面与平面平行的判定
班级:____________ 姓名:______________
选择题
1.如果一个角的两边与另一个角的两边分别平行,下列结论一定成立的是( )
A.这两个角相等
B.这两个角互补
C.这两个角所在的两个平面平行
D.这两个角所在的两个平面平行或重合
2.两个平面平行的条件是( )
A.一个平面内的一条直线平行于另一个平面
B.一个平面内的两条直线平行于另一个平面
C.一个平面内的无数条直线平行于另一个平面
D.一个平面内的任意一条直线平行于另一个平面
3.经过平面α外的两个点作该平面的平行平面,可以作出( )
A.0个 B.1个
C.0个或1个 D.1个或2个
4.给出下列结论,正确的有( )
①平行于同一条直线的两个平面平行;
②平行于同一平面的两个平面平行;
③过平面外两点,不能作一个平面与已知平面平行;
④若a,b为异面直线,则过a与b平行的平面只有一个.
A.1个 B.2个 C.3个 D.4个
5.正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是( )
A.平面E1FG1与平面EGH1
B.平面FHG1与平面F1H1G
C.平面F1H1H与平面FHE1
D.平面E1HG1与平面EH1G
6.若不在同一直线上的三点A、B、C到平面α的距离相等,则( )
A.α∥平面ABC
B.△ABC中至少有一边平行于α
C.△ABC中至多有两边平行于α
D.△ABC中只可能有一边与α相交
7.如图所示,在下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )
① ② ③ ④
A.①③ B.①④
C.②③ D.②④§科§网Z§X§X§
填空题
8.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论:
①平面EFGH∥平面ABCD;
②平面PAD∥BC;
③平面PCD∥AB;
④平面PAD∥平面PAB.
其中正确的有________.(填序号)
9.有下列几个命题:
①平面α内有无数个点到平面β的距离相等,则α∥β;
②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;
③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;
④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.
其中正确的有________.(填序号)
10.如下图所示,在正方体ABCD-A1B1C1D1中,E、F、G、H分别为棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.
解答题
11.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.
(1)求证:平面MNG∥平面ACD;
(2)求S△MNG∶S△ADC.
12.如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
中小学教育资源及组卷应用平台
2.2.2平面与平面平行的判定
班级:____________ 姓名:______________
选择题
1.如果一个角的两边与另一个角的两边分别平行,下列结论一定成立的是( )
A.这两个角相等
B.这两个角互补
C.这两个角所在的两个平面平行
D.这两个角所在的两个平面平行或重合
[答案] D
[解析] 这两个角相等或互补;这两个角所在的两个平面平行或重合.
2.两个平面平行的条件是( )
A.一个平面内的一条直线平行于另一个平面
B.一个平面内的两条直线平行于另一个平面
C.一个平面内的无数条直线平行于另一个平面
D.一个平面内的任意一条直线平行于另一个平面
[答案] D
[解析] 任意一条直线平行于另一个平面,即平面内所有的直线都平行于另一个平面.
3.经过平面α外的两个点作该平面的平行平面,可以作出( )
A.0个 B.1个
C.0个或1个 D.1个或2个
[答案] C
4.给出下列结论,正确的有( )
①平行于同一条直线的两个平面平行;
②平行于同一平面的两个平面平行;
③过平面外两点,不能作一个平面与已知平面平行;
④若a,b为异面直线,则过a与b平行的平面只有一个.
A.1个 B.2个 C.3个 D.4个
[答案] B
5.正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是( )
A.平面E1FG1与平面EGH1
B.平面FHG1与平面F1H1G
C.平面F1H1H与平面FHE1
D.平面E1HG1与平面EH1G
[答案] A
6.若不在同一直线上的三点A、B、C到平面α的距离相等,则( )
A.α∥平面ABC
B.△ABC中至少有一边平行于α
C.△ABC中至多有两边平行于α
D.△ABC中只可能有一边与α相交
[答案] B
7.如图所示,在下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )
① ② ③ ④
A.①③ B.①④
C.②③ D.②④
[答案] B[ 学§科§网Z§X§X§
填空题
8.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论:
①平面EFGH∥平面ABCD;
②平面PAD∥BC;
③平面PCD∥AB;
④平面PAD∥平面PAB.
其中正确的有________.(填序号)
[答案] ①②③
[解析] 把平面展开图还原为四棱锥如图所示,则EH∥AB,所以EH∥平面ABCD.同理可证EF∥平面ABCD,所以平面EFGH∥平面ABCD;平面PAD,平面PBC,平面PAB,平面PDC均是四棱锥的四个侧面,则它们两两相交.∵AB∥CD,∴平面PCD∥AB.同理平面PAD∥BC.
9.有下列几个命题:
①平面α内有无数个点到平面β的距离相等,则α∥β;
②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;
③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;
④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.
其中正确的有________.(填序号)
[答案] ③
[解析] ①不正确,当两平面相交时,在一个平面两侧分别有无数点满足条件;②不正确,当平面β与γ相交时也可满足条件;③正确,满足平面平行的判定定理;④不正确,当两平面相交时,也可满足条件.
10.如下图所示,在正方体ABCD-A1B1C1D1中,E、F、G、H分别为棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.
[答案] 点M在FH上
[解析] ∵FH∥BB1,HN∥BD,FH∩HN=H,
∴平面FHN∥平面B1BDD1,
又平面FHN∩平面EFGH=FH,
∴当M∈FH时,MN?平面FHN,
∴MN∥平面B1BDD1.
解答题
11.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.
(1)求证:平面MNG∥平面ACD;
(2)求S△MNG∶S△ADC.
[答案] (1)证明 (1)连接BM,BN,BG并延长分别交AC,AD,CD于P,F,H.
∵M,N,G分别为△ABC,△ABD,△BCD的重心,
则有===2,
且P,H,F分别为AC,CD,AD的中点.
连接PF,FH,PH,有MN∥PF.
又PF?平面ACD,MN?平面ACD,
∴MN∥平面ACD.
同理MG∥平面ACD,MG∩MN=M,
∴平面MNG∥平面ACD.
(2)解 由(1)可知==,
∴MG=PH.
又PH=AD,∴MG=AD.
同理NG=AC,MN=CD.
∴△MNG∽△ACD,其相似比为1∶3.
∴S△MNG∶S△ACD=1∶9.
12.如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?
[答案] 解:当Q为CC1的中点时,
平面D1BQ∥平面PAO.
∵Q为CC1的中点,P为DD1的中点,
∴QB∥PA.
∵P、O为DD1、DB的中点,∴D1B∥PO.
又PO∩PA=P,D1B∩QB=B,
D1B∥平面PAO,QB∥平面PAO,
∴平面D1BQ∥平面PAO.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)