一元二次方程根与系数的关系
设一元二次方程ax+bx+c=0(a≠0)的两根为x、x,当方程有解时,则x+ x=- ,x x=,其常见应用有:
求方程中字母系数的值
已知方程2x+4x+m=0的两根的平方和为34,求m的值.
解:设方程的两根为x、x,根据题意有
x+ x=34 ①
根据根与系数的关系得
x+ x= -2 ②
x x = ③
联立①②③可解得 m=-30③
检验:当m=-30时,△=256>0
∴ m=-30
注意:当运用一元二次方程的根与系数的关系时,前提条件是方程有根,即判别式△≥0。具体运用时,可先求出字母的值,再来检验△,如例1;也可先由△≥0,求出字母的范围,再来取值.
例1中由△=4-8m≥0得m≤2.
练习1、已知关于x的方程x-(k+1)x+k+2=0的两根的平方和是13,求k的值.
【±4】
2、已知方程2x+bx-2b+1=0的两根的平方和是,则b的值是( ). 【 A 】
A、3 B、-3或11 C、-11 D、 3或-11
求方程两根对称式的值
若、为一元二次方程ax+bx+c=0(a≠0)的两根,运用根与系数的关系,可求①+=(+)-2
②(-)=(+)-4
③ ∣-∣==
④
⑤
⑥等对称式的值.
例2、已知、为一元二次方程2x-6x+3=0的两根,求下列各式的值 ①(-) ② ③
解:根据根与系数的关系得
① (-)=(+)-4=3
② ==+1+1+=
③ =
只要代数式符合两根的对称式,经过适当的变形可得到只含、的代数式,代入求值即可.
练习:1、若、是方程2x-4x-3=0的两根,则=
【】
2、已知方程的两根为、,且,则m= 【 -8 】
利用根与系数的关系及根的定义求代数式的值
例3、已知m、n是一元二次方程的两根,求下列代数式的值
① ②
解:由根与系数的关系得 m+n=3、mn=1
由根的定义得
①
=
=
=3
②由 得
则
=
=
=
=
=385
此类代数式不属于对称式,仅仅用根与系数的关系是不够的.常常需要结合根的定义,将式中的高次降低,直至出现对称式,再利用根与系数的关系求值.如果例3中要求的值,我们只需要利用根的定义降次即可求出.
由根的定义可得
即
则=
= 再运用根与系数的关系即可.
练习1、已知、为方程的两个实数根,求的值. 【 32 】
2、已知x、x是方程的两个实数根,求代数式的值. 【 16 】
判断两根的特殊关系
在一元二次方程ax+bx+c=0(a≠0)中,当方程有根时,若两根互为相反数,有x+ x=-=0,即b=0;若两根互为倒数,有x x ==1,即a=c.
例4、关于x的方程的两根互为倒数,则m的值是( )
A、 B、 C、- D、-2
解:设方程两根为x、x,根据题意得,
x x= ①
△=≥0 ②
由①得m=
由②得m≥-2
∴m=
练习1、方程,当m= 时,方程两根互为相反数;当m= 时,方程两根互为倒数.
【 -1, 1 】
2、当k为何值时,方程的两根互为相反数. 【 -2 】
判断方程两根的符号
一元二次方程ax+bx+c=0(a≠0)当△≥0且x x>0时,两根同号;当△≥0且x x<0时,两根异号.
若x+ x>0 x x>0,则x>0、x>0;
若x+ x<0 x x>0,则x<0、x<0.
反之,也成立。
已知方程,不解方程,求证:
方程有两个不相等的实数根 ②当m>2时,方程有两个正根.
证明:①△==16>0
∴方程总有两个不相等的实数根.
设方程两根为x、x,根据根与系数的关系得
x+ x=2m x x=
当m>2时,x+ x=2m>0
x x==>0
∴x>0、x>0,即方程有两个正根.
练习1、若方程有两个正根,则m的取值范围是( )
A、0<m<1 B、m>1 C、-1≤m<0 D、m<-1 【 C 】
2、已知方程,根据下列条件求m的取值范围或取值.
①方程两根互为相反数 【 -2 】
②方程有两个负根 【>】
③方程有一个正根、一个负根 【<】
构造一元二次方程求值
已知且m≠n,求的值.
解:∵ ∴
又∵m≠n,∴可以把m、n看作是方程的两不等根,
∴m+n=、mn=
∴=
练习1、已知实数,求的值. 【 10 】
2、已知实数满足,,求的值. 【 1或4或-2 】
练习(一)填空题:
如果关于的方程的两根之差为2,那么?????????? 。
2、已知关于的一元二次方程两根互为倒数,则????? 。
3、已知关于的方程的两根为,且,则 ????????。
4、已知是方程的两个根,那么:???????? ;
??????? ;?????? ??。
5、已知关于的一元二次方程的两根为和,且,则??????? ;?????????? 。
6、如果关于的一元二次方程的一个根是,那么另一个根是?????????? ,的值为?????????? 。
?7、已知是的一根,则另一根为?????? ,的值为?????? 。
?8、一个一元二次方程的两个根是和,那么这个一元二次方程为:???????? 。
?
(二)求值题:
?1、已知是方程的两个根,利用根与系数的关系,求的值。
?2、已知是方程的两个根,利用根与系数的关系,求的值。
?3、已知是方程的两个根,利用根与系数的关系,求的值。
?4、已知两数的和等于6,这两数的积是4,求这两数。
?5、已知关于x的方程的两根满足关系式,求的值及方程的两个根。
?6、已知方程和有一个相同的根,求的值及这个相同的根。
?(三)能力提升题:
?1、实数在什么范围取值时,方程有正的实数根?
?2、已知关于的一元二次方程
?(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。
?(2)若这个方程的两个实数根、满足,求的值。
3、若,关于的方程有两个相等的正的实数根,求的值。
?4、是否存在实数,使关于的方程的两个实根,满足,如果存在,试求出所有满足条件的的值,如果不存在,请说明理由。
?5、已知关于的一元二次方程()的两实数根为,若,求的值。
?6、实数、分别满足方程和,求代式?
的值。?
学法总结 1、判别一元二次方程两根的符号。
?例1:不解方程,判别方程两根的符号。
分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定 或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定 或的正负情况。
?
解:∵,∴△=—4×2×(—7)=65>0
?∴方程有两个不相等的实数根。
?设方程的两个根为,
?∵<0
?∴原方程有两个异号的实数根。
?说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。
? 2、已知一元二次方程的一个根,求出另一个根以及字母系数的值。
?例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。
?解法一:把代入原方程,得:
???即解得
?当时,原方程均可化为:,解得:
?∴方程的另一个根为4,的值为3或—1。
解法二:设方程的另一个根为,
?
根据题意,利用韦达定理得:
,∵,∴把代入,可得:∴把代入,可得:
,即解得
∴方程的另一个根为4,的值为3或—1。
?说明:比较起来,解法二应用了韦达定理,解答起来较为简单。
? 例3:已知方程有两个实数根,且两个根的平方和比两根的积大21,求的值。
?分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。
? 解:∵方程有两个实数根, ∴△
?解这个不等式,得≤0 设方程两根为 则,
?∵ ∴
∴整理得:
?解得: 又∵,∴
?说明:当求出后,还需注意隐含条件,应舍去不合题意的。
3、运用判别式及根与系数的关系解题。
例4:已知、是关于的一元二次方程的两个非零实数根,问和能否同号?若能同号,请求出相应的的取值范围;若不能同号,请说明理由,
解:因为关于的一元二次方程有两个非零实数根,
?∴则有∴
?又∵、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得:?
假设、同号,则有两种可能:
(1)??????? (2)
若, 则有: ;即有:
?解这个不等式组,得
?∵时方程才有实树根,∴此种情况不成立。
? 若 ,?? 则有:
?即有:
?解这个不等式组,得;又∵,∴当时,两根能同号?
?说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出现频率很高,应是同学们重点练习的内容。
?4、运用一元二次方程根的意义及根与系数的关系解题。
?例5:已知、是方程的两个实数根,求的值。
?分析:本题可充分运用根的意义和根与系数的关系解题,应摒弃常规的求根后,再带入的方法,力求简解。
?解法一:由于是方程的实数根,所以
设,与相加,得:?
)?
?
(变形目的是构造和)
?根据根与系数的关系,有:?
,于是,得:?
∴=0
解法二:由于、是方程的实数根,
?∴
?∴
??说明:既要熟悉问题的常规解法,也要随时想到特殊的简捷解法,是解题能力提高的重要标志,是努力的方向。有关一元二次方程根的计算问题,当根是无理数时,运算将十分繁琐,这时,如果方程的系数是有理数,利用根与系数的关系解题可起到化难为易、化繁为简的作用。这类问题在解法上灵活多变,式子的变形具有创造性,重在考查能力,多年来一直受到命题老师的青睐。
?5、运用一元二次方程根的意义及判别式解题。
例6:已知两方程和至少有一个相同的实数根,求这两个方程的四个实数根的乘积。
?分析:当设两方程的相同根为时,根据根的意义,可以构成关于和的二元方程组,得解后再由根与系数的关系求值。
?解:设两方程的相同根为,? 根据根的意义,
? 有?? ?
?两式相减,得? 当时, ,方程的判别式
??
方程无实数解当时, 有实数解
代入原方程,得,? 所以
于是,两方程至少有一个相同的实数根,4个实数根的相乘积为
说明:(1)本题的易错点为忽略对的讨论和判别式的作用,常常除了犯有默认的错误,甚至还会得出并不存在的解:
当时,,两方程相同,方程的另一根也相同,所以4个根的相乘积为:;
?(2)既然本题是讨论一元二次方程的实根问题,就应首先确定方程有实根的条件:
??????? 且另外还应注意:求得的的值必须满足这两个不等式才有意义。
?