课件8张PPT。1第二十章 数据的分析20.2 数据的波动程度1学习目标1.了解方差的定义和计算公式.
2.会用方差计算公式来比较两组数据的波动大小.
3.能用样本方差估计总体方差.1学习过程●自主学习,独立思考越大越小1●合作探究,共同提高2.小明和小刚两人参加体育项目训练,近期的5次测试成绩如下表:
谁的成绩比较稳定?为什么?1●启发点拨,能力提升3.考察总体方差时,如果所要考察的总体包含很多个体,或者考察本身带有破坏性,实际中常常用样本的方差来估计总体的方差.为了了解甲、乙两种农作物的苗高情况,农科院分别抽取了10 株,记录它们的苗高(单位:cm)如下:
甲:9,10,11,12,7,13,10,8,12,8;
乙:8,13,12,11,10,12,7,7,9,11.
问:(1)哪种农作物的苗平均长得比较高?
(2)哪种农作物的苗长得比较整齐?一样高甲1五分钟基础知识堂堂清(课堂练习)B1B9.21甲甲课件10张PPT。数学八年级下册·配人教版1第二十章复习课知识点1:算术平均数1.数据 2,1,0,3,4 的平均数是( )
A.0 B.1
C.2 D.3
2.如图是小敏五次射击成绩的折线
图,根据图示信息,则此五次成绩的
平均数是_______.
3.已知一组数据 x1,x2,x3,x4 的平均数是 5,则数据 x1+3,x2+3,x3+3,x4+3 的平均数是_______.C8.481知识点2:加权平均数4.八年级(1)班有学生50人,八年级(2)班有学生40人.一次考试中,(1)班的平均分是81,(2)班的平均分是90,则这两个班的 90 位学生的平均分是( )
A.85 B.85.5 C.86 D.87
5.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:
将创新能力、综合知识和语言表达三项测试成绩按5∶
3∶2的比例计入总成绩,则该应聘者的总成绩是____分.A77.416.某校规定学生的体育成绩由三部分组成:早晨锻炼及体育课外活动占成绩的20%,体育理论测试占成绩的30%,体育技能测试占成绩的50%.小颖的上述三项成绩依次为92分、80分、84分,则小颖这学期的体育成绩是多少?解:由题意得,体育成绩为
92×20%+80×30%+84×50%=84.4(分).1知识点3:中位数和众数7.某中学篮球队12名队员的年龄情况如下表,则篮球队队员年龄的众数和中位数分别是( )
A.15,16 B.15,15 C.15,15.5 D.16,15
8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号为1,2,3,4,5的五位同学最后成绩如下表所示:
那么这五位同学演讲成绩的众数与中位数依次是( )
A.96,88 B.86,86 C.88,86 D.86,88AD19.某鞋店试销一种新款女鞋,销售情况如下表所示:
鞋店经理最关心的是,哪种尺码的鞋销量最大.对他来说,下列统计量中最重要的是( )
A.平均数 B.众数 C.中位数 D.方差
10.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( )
A.平均数 B.中位数 C.众数 D.方差BB1知识点4:方差和数据的波动程度BA1BA115.甲、乙两名工人同时加工10个同一种零件,加工后对零件的长度进行检测,结果如下:(单位:mm)
甲:19.9,19.7,19.8,20.0,20.2,20.1,19.9,20.3,20.1,20.2
乙:20.2,20.4,20.0,19.9,20.2,19.8,19.7,20.1,19.7,20.2
(1)分别计算上面两组数据的平均数和方差;
(2)若技术要求零件长度为20.0±0.5(mm),根据上面的计算,说明哪个工人加工的10个零件质量比较稳定.(2)由于甲的方差小,故甲工人加工零件的质量比较稳定.1