2020年10大中考难点问题击破专题05 解直角三角形(原稿版+解析版)

文档属性

名称 2020年10大中考难点问题击破专题05 解直角三角形(原稿版+解析版)
格式 zip
文件大小 1.3MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2020-05-10 17:40:50

文档简介

专题05 解直角三角形
考察规律
通过分析对比,可以看出:
安徽中考数学解直角三角形题的主要考向分为四类:
一是河流宽度模型,
二是塔高模型,
三是仰俯角模型,
四是航海问题(暂未出现)。
需要注意的是,虽然在题目呈现上是以上四类题型,但从数学模型来看,所有解直角三角形题型均可分为两大类:
一是钝角作垂线形,二是锐角作垂线形。
规律题型是在中考中每年必出的必考考点,难度比较简单,主要考察大家的基础知识点的掌握度以及计算力,快速找到辅助线和掌握解题通法步骤是提高该题型速度和准确度的方向。
【真题再现】
年份:2010年 考向:河流宽度模型
16. 若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A处到B处约需时间几分.(参考数据:≈1.7)

第16题图
【解析】如解图,过点B作BC垂直于河岸,垂足为C,则在Rt△ACB中,有
AB===600.
因而时间t==2≈3.4(分)
即船从A处到B处约需3.4分.

第16题解图
年份:2011年 考向:塔高模型
19. 如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500 m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长.(参考数据:≈1.73)

第19题图
【解析】由已知条件可知:△COB为等腰直角三角形,
∴OB=OC=1500. ..............(3分)
在Rt△COA中,∠ACO=90°-60°=30°,
∴OA=OC·tan30°=1500×=500, ..............(7分)
∴AB=OB-OA=1500-500≈1500-500×1.73=635.
所以隧道AB的长约635米. ..............(10分)
年份:2012年 考向:河流宽度模型
19. 如图,在△ABC中,∠A=30°,∠B=45°,AC=2.求AB的长.

第19题图
【解析】如解图,作CD⊥AB于D点.
在Rt△ACD中,∠A=30°,AC=2,
所以AD=AC·cos30°=2×=3. ..............(5分)
CD=AC·sin30°=.
在Rt△BCD中,∠B=45°,所以BD=CD=,
∴AB=AD+BD=3+. ...........................(10分)

第19题解图
年份:2013年 考向:塔高模型
19. 如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°,若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)

第19题图
【解析】如解图,过点A作AF⊥CE于点F,
在Rt△ABF中,AB=20,
∵sinα=,∴AF=20×=10. ............(5分)
在Rt△AEF中,∵sinβ=,
∴AE==10(m). ............(10分)

第19题解图
年份:2014年 考向:河流宽度模型
18. 如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20 km;BC段与AB、CD段都垂直,长为10 km;CD段长为30 km,求两高速公路间的距离(结果保留根号).

第18题图
【解析】如解图,过点A作AB的垂线交DC延长线于点E,过点E作l1的垂线与l1、l2分别交于点H、F,则HF⊥l2.
由题意知AB⊥BC,BC⊥CD,又AE⊥AB,
∴四边形ABCE为矩形,∴AE=BC,AB=EC.

第18题解图
∴DE=DC+CE=DC+AB=50.
又AB与l1成30°角,
∴∠EDF=30°,∴∠EAH=60°.
在Rt△DEF中,EF=DE·sin30°=50×=25,......................(5分)
在Rt△AEH中,EH=AE·sin60°=10×=5,
∴HF=EF+HE=25+5.
即两高速公路间距离为(25+5) km. .......................(8分)
年份:2015年 考向:仰俯角模型
18. 如图,平台AB高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(≈1.7)

第18题图
【解析】如解图,作BE⊥CD于点E,则CE=AB=12.
在Rt△BCE中,BE===12. ...........(3分)

第18题解图
在Rt△BDE中,∵∠DBE=45°,∠DEB=90°,
∴∠BDE=45°,∴DE=BE=12, ..............(5分)
∴CD=CE+DE=12+12≈32.4,
∴楼房CD的高度约为32.4米. ............(8分)
年份:2016年 考向:河流宽度模型
19. 如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点.某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.

第19题图
【解析】∵∠DEB=60°,∠DAB=30°,
∴∠ADE=60°-30°=30°,
∴∠DAB=∠ADE,
∴DE=AE=20, ........(3分)
如解图,过点D作DF⊥AB于点F,则∠EDF=30°,
∴在Rt△DEF中,EF=DE=10, .........(6分)
∴AF=20+10=30,
∵DF⊥AB,∠CAB=90°,
∴CA∥DF,
又∵l1∥l2,
∴四边形CAFD是矩形,
∴CD=AF=30,
答:C、D两点间的距离为30米. ................(10分)

第19题解图
年份:2017年 考向:塔高模型
17.如图,游客在点A处坐缆车出发,沿A-B-D的路线可至山顶D处.假设AB和BD都是直线段,且AB=BD=600 m,α=75°,β=45°,求DE的长.
(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)

第17题图
【解析】(方法一)在Rt△BDF中,由sinβ=可得,
DF=BD·sinβ=600×sin45°=600×=300≈423(m). ..........(3分)
在Rt△ABC中,由cosα=可得,
BC=AB·cosα=600×cos75°≈600×0.26=156(m). ........(6分)
∴DE=DF+EF=DF+BC≈423+156=579(m). .................(8分)
(方法二)如解图,连接AD,过点B作BG⊥AD,∵AB=BD=600 m,
∴AG=GD=AD,∠ABG=∠DBG=∠ABD,
又∵α=75°,β=45°,∠FBC=90°,
∴∠ABD=360°-75°-45°-90°=150°,
∴∠ABG=75°,∴∠DAB=∠BAC=15°,∠DAE=30°,
在Rt△ABG中,sin∠ABG=,
∴AG=AB·sin∠ABG=600×sin75°≈600×0.97=582(m)
在Rt△DEA中,∵∠DAE=30°,
∴DE=AD=AG=582(m). ........................(8分)

第17题解图
年份:2018年 考向:仰俯角模型,塔高模型
19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)
(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)

第19题图
【解析】(解法一)
由题意知:∠AEB=∠FED=45°,
∴∠AEF=90°,
在Rt△AEF中,=tan∠AFE=tan84.3°≈10.02,
在△ABE和△FDE中,∠ABE=∠FDE=90°,∠AEB=∠FED,
∴△ABE∽△EDF,
∴=≈10.02,
∴AB=10.02×FD=18.036≈18(米).
答:旗杆AB的高度约为18米.
(解法二)如解图,作FG⊥AB于点G,AG=AB-GB=AB-FD=AB-1.8,

第19题解图
由题意知:△ABE和△FDE均为等腰直角三角形,
∴AB=BE,DE=FD=1.8,
∴FG=DB=DE+BE=AB+1.8.
在Rt△AFG中,=tan∠AFG=tan39.3°,
即≈0.82,
解得:AB=18.2≈18(米).
答:旗杆AB的高度约为18米.
年份:2019年 考向:三角函数结合圆综合
筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.
(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)
【解析】连接CO并延长,交AB于D,则CD⊥AB,所以D为AB中点,所求运行轨道的最高点C到弦AB所在直线的距离即为线段CD的长。
在Rt△AOD中,∵AD=AB=3,∠OAD=41.30,
∴OD=AD·tan41.30≈3×0.88=2.64,
OA=
∴CD=CO+OD=AO+OD=2.64+4=6.64。
答:运行轨道的最高点C到弦AB所在直线的距离约为6.64米。……10分


【技巧总结】
当题目条件所得三角形一个角为75°、105°的特殊角或者在条件中给给出三角函数值的一般角度值时,如图所示


【典型例题】
例1. (2019?河南?9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.
(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)

【分析】由三角函数求出AC=≈82.1m,得出BC=AC﹣AB=61.1m,在Rt△BCD中,由三角函数得出CD=BC≈105.7m,即可得出答案.
【解答】解:∵∠ACE=90°,∠CAE=34°,CE=55m,
∴tan∠CAE=,
∴AC==≈82.1m,
∵AB=21m,
∴BC=AC﹣AB=61.1m,
在Rt△BCD中,tan60°==,
∴CD=BC≈1.73×61.1≈105.7m,
∴DE=CD﹣EC=105.7﹣55≈51m,
答:炎帝塑像DE的高度约为51m.
【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度适中
例2.(2019?天津?10分)如图,海面上一艘船由向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°.根据测得的数据,计算这座灯塔的高度CD(结果取整数).
参考数据:,cos31°≈0.86,tan31°≈0.60.

【解析】如图,根据题意,∠CAD=31°,∠CBD=45°,∠CDA=90°,AB=30.
∵在Rt△ACD,tan∠CAD=,
∴AD=
∵在Rt△BCD中,tan∠CBD=,
∴BD=
又AD=BD+AB
∴30+CD
∴CD=
答:这座灯塔的高度CD约为45m.

【对应练习】
1. (2019?广西贺州?8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离.(≈1.73,≈1.4,结果保留一位小数).

【分析】过点C作CD⊥AB,垂足为点D,则∠ACD=60°,∠BCD=45°,通过解直角三角形可求出BD,AD的长,将其相加即可求出AB的长.
【解答】解:过点C作CD⊥AB,垂足为点D,则∠ACD=60°,∠BCD=45°,如图所示.

在Rt△BCD中,sin∠BCD=,cos∠BCD=,
∴BD=BC?sin∠BCD=20×3×≈42,CD=BC?cos∠BCD=20×3×≈42;
在Rt△ACD中,tan∠ACD=,
∴AD=CD?tan∠ACD=42×≈72.7.
∴AB=AD+BD=72.7+42=114.7.
∴A,B间的距离约为114.7海里.
【点睛】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形,求出BD,AD的长是解题的关键.
2. (2019?甘肃省庆阳市?8分)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).

【分析】如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.解直角三角形求出∠DCF即可判断.
【解答】解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.

∵∠CEH=∠CFH=∠FHE=90°,
∴四边形CEHF是矩形,
∴CE=FH,
在Rt△ACE中,∵AC=40cm,∠A=60°,
∴CE=AC?sin60°=34.6(cm),
∴FH=CE=34.6(cm)
∵DH=49.6cm,
∴DF=DH﹣FH=49.6﹣34.6=15(cm),
在Rt△CDF中,sin∠DCF===,
∴∠DCF=30°,
∴此时台灯光线为最佳.
【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型.
3.(2019?上海)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.
(1)求点D′到BC的距离;
(2)求E、E′两点的距离.

【分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;
(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.
【解答】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.

由题意,得:AD′=AD=90厘米,∠DAD′=60°.
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AFD′=∠BHD′=90°.
在Rt△AD′F中,D′F=AD′?sin∠DAD′=90×sin60°=45厘米.
又∵CE=40厘米,DE=30厘米,
∴FH=DC=DE+CE=70厘米,
∴D′H=D′F+FH=(45+70)厘米.
答:点D′到BC的距离为(45+70)厘米.
(2)连接AE,AE′,EE′,如图4所示.

由题意,得:AE′=AE,∠EAE′=60°,
∴△AEE′是等边三角形,
∴EE′=AE.
∵四边形ABCD是矩形,
∴∠ADE=90°.
在Rt△ADE中,AD=90厘米,DE=30厘米,
∴AE==30厘米,
∴EE′=30厘米.
答:E、E′两点的距离是30厘米.
【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.
4.(2019?遵义)某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).

【分析】作DE⊥BC于E,根据矩形的性质得到FC=DE,DF=EC,根据直角三角形的性质求出FC,得到AF的长,根据正弦的定义计算即可.
【解答】解:作DE⊥BC于E,

则四边形DECF为矩形,
∴FC=DE,DF=EC,
在Rt△DBE中,∠DBC=30°,
∴DE=BD=84,
∴FC=DE=84,
∴AF=AC﹣FC=154﹣84=70,
在Rt△ADF中,∠ADF=45°,
∴AD=AF=70(米),
答:电动扶梯DA的长为70米.
【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
5.(2019?西藏)由我国完全自主设计,自主建造的首艘国产航母于2018年5月成功完成首次海上试验任务.如图,航母由西向东航行,到达B处时,测得小岛A在北偏东60°方向上,航行20海里到达C点,这时测得小岛A在北偏东30°方向上,小岛A周围10海里内有暗礁,如果航母不改变航线继续向东航行,有没有触礁危险?请说明理由.

【分析】过A作AD⊥BC于点D,求出∠CAD、∠DAB的度数,求出∠BAC和∠ABC,根据等边对等角得出AC=BC=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.
【解答】解:如果渔船不改变航线继续向东航行,没有触礁的危险,
理由如下:过点A作AD⊥BC,垂足为D,

根据题意可知∠ABC=30°,∠ACD=60°,
∵∠ACD=∠ABC+∠BAC,
∴∠BAC=30°=∠ABC,
∴CB=CA=20,
在Rt△ACD中,∠ADC=90°,∠ACD=60°,sin∠ACD=,
∴sin60°=,
∴AD=20×sin60°=20×=10>10,
∴渔船不改变航线继续向东航行,没有触礁的危险.
【点睛】本题考查了解直角三角形的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
6.(2019?永州)为了测量某山(如图所示)的高度,甲在山顶A测得C处的俯角为45°,D处的俯角为30°,乙在山下测得C,D之间的距离为400米.已知B,C,D在同一水平面的同一直线上,求山高AB.(可能用到的数据:≈1.414,≈1.732)

【分析】设AB=x,然后根据等腰直角三角形以及特殊角锐角三角函数的值即可求出答案.
【解答】解:设AB=x,
由题意可知:∠ACB=45°,∠ADB=30°,
∴AB=BC=x,
∴BD=BC+CD=x+400,
在Rt△ADB中,
∴tan30°=,
∴=,
解得:x=≈546.4,
∴山高AB为546.4米
【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数以及一元一次方程的解法,本题属于中等题型.
7.(2019?鄂尔多斯)某校组织学生到恩格贝A和康镇B进行研学活动,澄澄老师在网上查得,A和B分
别位于学校D的正北和正东方向,B位于A南偏东37°方向,校车从D出发,沿正北方向前往A地,行驶到15千米的E处时,导航显示,在E处北偏东45°方向有一服务区C,且C位于A,B两地中点处.
(1)求E,A两地之间的距离;
(2)校车从A地匀速行驶1小时40分钟到达B地,若这段路程限速100千米/时,计算校车是否超速?
(参考数据:sin37°=,cos37°=,tan37°=)

【分析】(1)作CH⊥AD于H.由题意∠HEC=45°,可得CH=EH,设CH=HE=x千米,则AH=CH=(x+15)千米,构建方程即可解决问题.
(2)求出BA的长,再求出校车的速度即可判断.
【解答】解:(1)如图,作CH⊥AD于H.

由题意∠HEC=45°,可得CH=EH,设CH=HE=x千米,
∵点C是AB的中点,CH∥BD,
∴AH=HD=(x+15)千米,
在Rt△ACH中,tan37°=,
∴=,
∴x=45,
∴CH=45(千米),AH=60(千米),AD=120(千米),
∴EA=AD﹣DE=120﹣15=105(千米).
(2)在Rt△ACH中,AC==75(千米),
∴AB=2AC=150(千米),
∵150÷=90千米/小时,
∵90<100,
∴校车没有超速.
【点睛】本题考查解直角三角形的应用﹣方向角,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
8.(2019?湘潭)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为30°.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加15°,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

【分析】利用已知结合锐角三角函数关系得出BM的长.
【解答】解:如图所示:连接MN,由题意可得:∠AMN=90°,∠ANM=30°,∠BNM=45°,AN=8km,
在直角△AMN中,MN=AN?cos30°=8×=4(km).
在直角△BMN中,BM=MN?tan45°=4km≈6.9km.
答:此时火箭所在点B处与发射站点M处的距离约为6.9km.

【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
9.(2019?娄底)如图,某建筑物CD高96米,它的前面有一座小山,其斜坡AB的坡度为i=1:1.为了测量山顶A的高度,在建筑物顶端D处测得山顶A和坡底B的俯角分别为α、β.已知tanα=2,tanβ=4,求山顶A的高度AE(C、B、E在同一水平面上).

【分析】作AF⊥CD于F.设AE=x米.由斜坡AB的坡度为i=1:1,得出BE=AE=x米.解Rt△BDC,求得BC==24米,则AF=EC=(x+24)米.解Rt△ADF,得出DF=AF?tanα=2(x+24)米,又DF=DC﹣CF=DC﹣AE=(96﹣x)米,列出方程2(x+24)=96﹣x,求出x即可.
【解答】解:如图,作AF⊥CD于F.设AE=x米.
∵斜坡AB的坡度为i=1:1,
∴BE=AE=x米.
在Rt△BDC中,∵∠C=90°,CD=96米,∠DBC=∠β,
∴BC===24(米),
∴EC=EB+BC=(x+24)米,
∴AF=EC=(x+24)米.
在Rt△ADF中,∵∠AFD=90°,∠DAF=∠α,
∴DF=AF?tanα=2(x+24)米,
∵DF=DC﹣CF=DC﹣AE=(96﹣x)米,
∴2(x+24)=96﹣x,解得x=16.
故山顶A的高度AE为16米.

【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解直角三角形的应用﹣坡度坡角问题,要求学生能借助俯角构造直角三角形并解直角三角形.解此题的关键是掌握数形结合思想与方程思想的应用.
10.(2019?陕西)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB.(小平面镜的大小忽略不计)

【分析】过点C作CH⊥AB于点H,则CH=BD,BH=CD=0.5.解Rt△ACH,得出AH=CH=BD,那么AB=AH+BH=BD+0.5.再证明△EFG∽△ABG,根据相似三角形对应边成比例求出BD=17.5,进而求出AB即可.
【解答】解:如图,过点C作CH⊥AB于点H,

则CH=BD,BH=CD=0.5.
在Rt△ACH中,∠ACH=45°,
∴AH=CH=BD,
∴AB=AH+BH=BD+0.5.
∵EF⊥FB,AB⊥FB,
∴∠EFG=∠ABG=90°.
由题意,易知∠EGF=∠AGB,
∴△EFG∽△ABG,
∴=即=,
解之,得BD=17.5,
∴AB=17.5+0.5=18(m).
∴这棵古树的高AB为18m.
【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,相似三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.
11.(2019?内江)如图,两座建筑物DA与CB,其中CB的高为120米,从DA的顶点A测得CB顶部B的仰角为30°,测得其底部C的俯角为45°,求这两座建筑物的地面距离DC为多少米?(结果保留根号)

【分析】作AE⊥BC于E,设BE=x,利用正切的定义用x表示出EC,结合题意列方程求出x,计算即可.
【解答】解:作AE⊥BC于E,

则四边形ADCE为矩形,
∴AD=CE,
设BE=x,
在Rt△ABE中,tanBAE=,
则AE==x,
∵∠EAC=45°,
∴EC=AE=x,
由题意得,BE+CE=120,即x+x=120,
解得,x=60(﹣1),
∴AD=CE=x=180﹣60,
∴DC=180﹣60,
答:两座建筑物的地面距离DC为(180﹣60)米.
【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
12.(2019?本溪)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列向题.
(1)求AC的长度(结果保留根号);
(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).

【分析】(1)过F作FH⊥DE于H,解直角三角形即可得到结论;
(2)过A作AG⊥ED交ED的延长线于G,根据等腰直角三角形的性质即可得到结论.
【解答】解:(1)过F作FH⊥DE于H,

∴∠FHC=∠FHD=90°,
∵∠FDC=30°,DF=30,
∴FH=DF=15,DH=DF=15,
∵∠FCH=45°,
∴CH=FH=15,
∴,
∵CE:CD=1:3,
∴DE=CD=20+20,
∵AB=BC=DE,
∴AC=(40+40)cm;
(2)过A作AG⊥ED交ED的延长线于G,
∵∠ACG=45°,
∴AG=AC=20+20,
答:拉杆端点A到水平滑杆ED的距离为(20+20)cm.
【点睛】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.

专题05 解直角三角形
考察规律
通过分析对比,可以看出:
安徽中考数学解直角三角形题的主要考向分为四类:
一是河流宽度模型,
二是塔高模型,
三是仰俯角模型,
四是航海问题(暂未出现)。
需要注意的是,虽然在题目呈现上是以上四类题型,但从数学模型来看,所有解直角三角形题型均可分为两大类:
一是钝角作垂线形,二是锐角作垂线形。
规律题型是在中考中每年必出的必考考点,难度比较简单,主要考察大家的基础知识点的掌握度以及计算力,快速找到辅助线和掌握解题通法步骤是提高该题型速度和准确度的方向。
【真题再现】
年份:2010年 考向:河流宽度模型
16. 若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A处到B处约需时间几分.(参考数据:≈1.7)

第16题图

年份:2011年 考向:塔高模型
19. 如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500 m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长.(参考数据:≈1.73)

第19题图

年份:2012年 考向:河流宽度模型
19. 如图,在△ABC中,∠A=30°,∠B=45°,AC=2.求AB的长.

第19题图

年份:2013年 考向:塔高模型
19. 如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°,若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)

第19题图

年份:2014年 考向:河流宽度模型
18. 如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20 km;BC段与AB、CD段都垂直,长为10 km;CD段长为30 km,求两高速公路间的距离(结果保留根号).

第18题图

年份:2015年 考向:仰俯角模型
18. 如图,平台AB高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(≈1.7)

第18题图

年份:2016年 考向:河流宽度模型
19. 如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点.某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.

第19题图

年份:2017年 考向:塔高模型
17.如图,游客在点A处坐缆车出发,沿A-B-D的路线可至山顶D处.假设AB和BD都是直线段,且AB=BD=600 m,α=75°,β=45°,求DE的长.
(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)

第17题图

年份:2018年 考向:仰俯角模型,塔高模型
19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)
(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)

第19题图

年份:2019年 考向:三角函数结合圆综合
筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.
(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)
【技巧总结】
当题目条件所得三角形一个角为75°、105°的特殊角或者在条件中给给出三角函数值的一般角度值时,如图所示


【典型例题】
例1. (2019?河南?9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.
(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)



例2.(2019?天津?10分)如图,海面上一艘船由向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°.根据测得的数据,计算这座灯塔的高度CD(结果取整数).
参考数据:,cos31°≈0.86,tan31°≈0.60.




【对应练习】
1. (2019?广西贺州?8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离.(≈1.73,≈1.4,结果保留一位小数).

2. (2019?甘肃省庆阳市?8分)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).

3.(2019?上海)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.
(1)求点D′到BC的距离;
(2)求E、E′两点的距离.

4.(2019?遵义)某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).

5.(2019?西藏)由我国完全自主设计,自主建造的首艘国产航母于2018年5月成功完成首次海上试验任务.如图,航母由西向东航行,到达B处时,测得小岛A在北偏东60°方向上,航行20海里到达C点,这时测得小岛A在北偏东30°方向上,小岛A周围10海里内有暗礁,如果航母不改变航线继续向东航行,有没有触礁危险?请说明理由.

6.(2019?永州)为了测量某山(如图所示)的高度,甲在山顶A测得C处的俯角为45°,D处的俯角为30°,乙在山下测得C,D之间的距离为400米.已知B,C,D在同一水平面的同一直线上,求山高AB.(可能用到的数据:≈1.414,≈1.732)

7.(2019?鄂尔多斯)某校组织学生到恩格贝A和康镇B进行研学活动,澄澄老师在网上查得,A和B分
别位于学校D的正北和正东方向,B位于A南偏东37°方向,校车从D出发,沿正北方向前往A地,行驶到15千米的E处时,导航显示,在E处北偏东45°方向有一服务区C,且C位于A,B两地中点处.
(1)求E,A两地之间的距离;
(2)校车从A地匀速行驶1小时40分钟到达B地,若这段路程限速100千米/时,计算校车是否超速?
(参考数据:sin37°=,cos37°=,tan37°=)

8.(2019?湘潭)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为30°.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加15°,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

9.(2019?娄底)如图,某建筑物CD高96米,它的前面有一座小山,其斜坡AB的坡度为i=1:1.为了测量山顶A的高度,在建筑物顶端D处测得山顶A和坡底B的俯角分别为α、β.已知tanα=2,tanβ=4,求山顶A的高度AE(C、B、E在同一水平面上).

10.(2019?陕西)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB.(小平面镜的大小忽略不计)

11.(2019?内江)如图,两座建筑物DA与CB,其中CB的高为120米,从DA的顶点A测得CB顶部B的仰角为30°,测得其底部C的俯角为45°,求这两座建筑物的地面距离DC为多少米?(结果保留根号)

12.(2019?本溪)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列向题.
(1)求AC的长度(结果保留根号);
(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).


同课章节目录