四年级下册数学教案-三角形内角和-人教版

文档属性

名称 四年级下册数学教案-三角形内角和-人教版
格式 zip
文件大小 24.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-05-11 21:39:58

图片预览

文档简介

《三角形的内角和》教学设计
教学目标:
1、让学生亲自动手操作,通过量算、剪拼、折拼的方法,验证三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、通过数学活动使学生经历知识的获取过程,培养学生的创新意识、探索精神和实践能力。
3、通过动手操作把三角形内角和转化为平角的探究活动,参透“转化”数学思想。
教学重点:探索和验证三角形三个内角度数和等于180°。
教学难点:充分发挥学生的主体作用,自主探索和发现三角形三个内角度数和等于180°
教学准备:课件、三角形卡片、量角器、三角板等
教学过程:
一、激趣引入,揭示课题
1、师:同学们,你们喜欢听故事吗?
师:三百多年前,在法国郊区的一个小镇上,有一个名叫帕斯卡的12岁小男孩,他非常聪明,但他又很顽皮。一天,他又闯祸了,被爸爸关在家里的阁楼上思过,到了晚上,姐姐正要叫帕斯卡下来吃饭,只见他兴冲冲地从阁楼上跑了下来,一边跑一边大声喊着:“我发现了,我发现了……”他究竟发现了什么呢?
2、(课件出示)三角形的内角和是180°。(学生大声读)
3、师:你明白这句话的意思吗?说说看。
师:一个三角形有几个内角?(出示一个三角形)这个三角形的内角在哪?谁来指一指给大家看。
师:三角形的三个内角的度数之和就是三角形的内角和。
4、师:帕斯卡发现了“三角形的内角和是180°”,那么,你们相信帕斯卡的发现吗?这节课我们就一起来验证:三角形的内角和是不是等于180°(板书课题)。
二、合作、交流,自主探索新知
1、动手操作实践。
师:有什么方法可以验证呢?请同学们4人为一小组打开数学课本第67页,先学一学看看能否从中得到一些启发,然后再用你们想到的方法进行验证验证。
学生分别用不同的方法验证。
2、学生自由汇报研究结果。
小组派代表汇报自己小组的研究结果。
预设汇报:
(1)量一量,算一算
①学生汇报用量算的方法验证。
②汇报测量结果,并观察,从大家量、算的结果中,你发现什么?
(解释:测量的误差性)
(2)、撕一撕,拼一拼
①学生汇报用撕拼的方法验证。
②学生到展台上展示验证方法。
③引导结论:三角形的内角和等于180°。
(3)、折一折,拼一拼
①学生汇报用折拼的方法验证。
②学生到展台上展示验证方法。
③引导结论:三角形的内角和等于180°。
3、对比撕拼法和折拼法,渗透转化思想。
师小结:不同的方法,同样的精彩,所以用折一折的方法,我们同样也可以得出结论:三角形的内角和等于180°。不知道你们发现了吗?无论是撕下来拼,还是折起来拼,其实这两种方法之间有一个共同点,它们都是把一个三角形转化成了一个平角,也就是把新知转化成旧知来解决,它们都用到了数学上一种重要的方法——转化方法,在今后的学习中我们还会经常用到它。
4、回顾三种验证方法。(教师播放微课演示验证方法)
师:同学们的点子真多,想到了这么多的方法来验证,下面让我们再来回顾一下刚才的几种验证方法,请看视频。
师:同学们现在你们可以相信帕斯卡了吗?
5、小结得出结论:三角形的内角和等于180°。
三、解决问题
1、看图求出未知角的度数。
2、根据条件,求出三角形各个角的度数。
①求等边三角形的内角。
②一个等腰三角形的顶角是100°,求一个底角的度数。
③有一个锐角是40°的直角三角形,求另一个锐角的度数。
四、总结延伸
今天你学到了哪些知识?是怎样获取这些知识的?
五、介绍数学家帕斯卡以及他的验证方法。
1、帕斯卡的验证方法。
长方形的四个角都是直角,长方形的四个角的和一定是定是360°。
?把长方形沿对角线一分为二,就变成两个直角三角形,每个直角三角形的内角和就是360除以2等于180度。
任意一个直角三角形都可以看做是长方形剪开的,所以任意直角三角形的内角和一定是180度。
?任何一个锐角三角形都可以沿高分为两个直角三角形,两个直角三角形的和180+180=360度,而其中有两个直角拼在一起成了一条直线,所以真正作为锐角三角形的三个内角的和就是360-90-90=180度。同样的道理可以说明钝角三角形内角和也是180度。
2、介绍帕斯卡。
帕斯卡:(1623—1662)是法国著名的数学家、物理学家、哲学家和散文家。1623年6月19日诞生于法国多姆山省克莱蒙费朗城。帕斯卡没有受过正规的学校教育。他4岁时母亲病故,由受过高等教育、担任政府官员的父亲和两个姐姐负责对他进行教育和培养。他父亲是一位受人尊敬的数学家,但是他有个错误的认识,认为学习数学很伤身体,所以把家里所有的数学书都藏了起来,并且不允许他的朋友们在帕斯卡面前谈论数学。他只让帕斯卡看很多古典文学书,希望他能好好学习文学。父亲这一做法反而引起了帕斯卡对数学的兴趣。他开始偷偷地研究数学。有一天他问父亲,什么是几何,父亲很简单地回答说“几何就是教人在画图时能作出正确又美观的图”。于是帕斯卡就拿了粉笔在地上画起各种图形来。画着画着,12岁的帕斯卡发现任何一个三角形内角和都是180度,当他把这个发现告诉父亲时,父亲激动得泪如雨下,搬出了自己所有的数学书给帕斯卡看。在其父精心地教育下,帕斯卡很小时就精通欧几里得几何,他自己独立地发现了欧几里得的前32条定理,而且顺序也完全正确。后来通过不断的自学探究,帕斯卡成了非常有成就的数学家、物理学家和哲学家。

六、拓展练习。
根据所学的知识,想办法求出下面多边形的内角和。








PAGE



3