中小学教育资源及组卷应用平台
人教版七年级下册易错题专题
5.3 平行线的性质
一.选择题(共9小题)
1.如图1是长方形纸片,将纸片沿EF折叠成图2,再沿BF折叠成图3.若图1中∠DEF=28°,则图3中∠CFE的大小为( )
A.84° B.96° C.112° D.124°
2.如图,AB∥CD∥EF,则下列四个等式中一定成立的有( )
①∠2+∠3=180;
②∠2=∠3;
③∠1+∠3=180°
④∠2+∠3-∠1=180°
A.1个 B.2个 C.3个 D.4个
3.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=30°;④如果∠CAD=150°,必有∠4=∠C;正确的有( )
A.①②④ B.①③④ C.②③④ D.①②③④
4.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是( )
A.32° B.28° C.26° D.23°
5.如图,AB∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P-2∠C=57°,则∠C等于( )
A.24° B.34° C.26° D.22°
6.下列命题是真命题的有( )个
①两条直线被第三条直线所截,同位角的平分线平行
②垂直于同一条直线的两条直线互相平行
③过一点有且只有一条直线与已知直线平行
④对顶角相等,邻补角互补
A.1 B.2 C.3 D.4
7.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是( )
A.α+β=180° B.α+β=90° C.β=3α D.α-β=90°
8.如图1的长方形纸带中∠DEF=25°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是( )
A.105° B.120° C.130° D.145°
9.两个角的两边分别平行,其中一个角是60°,则另一个角是( )
A.60° B.120° C.60°或120° D.无法确定
二.填空题(共1小题)
10.在同一平面内有2018条直线a1,a2,a3…,a2018,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,那么直线a1与直线a2018的位置关系是 .
三.解答题(共8小题)
11.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D.
(1)求∠CBD的度数;
(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.
12.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.
(1)求证:∠ABD=∠C;
(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求证:∠ABF=∠AFB;
②求∠CBE的度数.
13.阅读下列材料:
已知:如图1,直线AB∥CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.小冰是这样做的:证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.图1即∠BED=∠B+∠D.
请利用材料中的结论,完成下面的问题:
已知:直线AB∥CD,直线MN分别与AB、CD交于点E、F.
(1)如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;
(2)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.
14.如图,已知AB∥CD,点E在AC的右侧,∠BAE,∠DCE的平分线相交于点F.探索∠AEC与∠AFC之间的等量关系,并证明你的结论.
15.已知直线l1∥l2,直线l3与l1、l2分别交于C、D两点,点P是直线l3上的一动点,如图①,若动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具有∠3+∠1=∠2这一相等关系?试说明理由;
如图②,当动点P在线段CD之外且在CD的上方运动(不与C、D两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.
16.课上教师呈现一个问题:
已知:如图1,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.
甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:
甲同学辅助线的做法和分析思路如下:
辅助线:过点F作MN∥CD.
分析思路:
①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数之和;
②由辅助线作图可知,∠2=∠1,从而由已知∠1的度数可得∠2的度数;
③由AB∥CD,MN∥CD推出AB∥MN,由此可推出∠3=∠4;
④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;
⑤从而可求∠EFG的度数.
(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.
辅助线:
分析思路:
(2)请你根据丙同学所画的图形,求∠EFG的度数.
17.问题情境:
(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答
问题迁移:
(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.
18.如图1,AB∥CD,直线EF交AB于点E,交CD于点F,点G在CD上,点P在直线EF左侧、且在直线AB和CD之间,连接PE、PG.
(1)求证:∠EPG=∠AEP+∠PGC;
(2)连接EG,若EG平分∠PEF,∠AEP+∠PGE=110°,∠PGC=∠EFC,求∠AEP的度数;
(3)如图2,若EF平分∠PEB,∠PGC的平分线所在的直线与EF相交于点H,则∠EPG与∠EHG之间的数量关系为 .
参考答案
一.选择题
1.解:∵四边形ABCD为长方形,
∴AD∥BC,
∴∠BFE=∠DEF=28°.
由翻折的性质可知:
图2中,∠EFC=180°-∠BFE=152°,∠BFC=∠EFC-∠BFE=124°,
图3中,∠CFE=∠BFC-∠BFE=96°.
故选:B.
2.解:∵AB∥CD∥EF,
∴∠2+∠BDC=180°,∠3=∠CDE,
又∠BDC=∠CDE-∠1,
∴∠2+∠3-∠1=180°.
而∠2+∠3=180;∠2=∠3;∠1+∠3=180°均不成立,
故选:A.
3.解:∵∠2=30°,
∴∠1=60°,
又∵∠E=60°,
∴∠1=∠E,
∴AC∥DE,故①正确;
∵∠1+∠2=90°,∠2+∠3=90°,
即∠BAE+∠CAD=∠1+∠2+∠2+∠3=90°+90°=180°,故②正确;
∵BC∥AD,
∴∠1+∠2+∠3+∠C=180°,
又∵∠C=45°,∠1+∠2=90°,
∴∠3=45°,
∴∠2=90°-45°=45°,故③错误;
∵∠D=30°,∠CAD=150°,
∴∠CAD+∠D=180°,
∴AC∥DE,
∴∠4=∠C,故④正确.
故选:A.
4.解:如图,延长DC交AE于F,
∵AB∥CD,∠BAE=92°,
∴∠CFE=92°,
又∵∠DCE=115°,
∴∠E=∠DCE-∠CFE=115°-92°=23°,
故选:D.
5.解:如图,延长KP交AB于F,
∵AB∥DE,DK平分∠CDE,
∴∠BPF=∠EDK=∠CDK,
设∠C=α,则∠BPG=2α+57°,
∵∠BPG是△BPF的外角,∠CDK是△CDG的外角,
∴∠BFP=∠BPG-∠ABP=2α+57°-∠ABP,∠CDK=∠C+∠CGD=α+∠BGP=α+(180°-∠BPG-∠CBP),
∴2α+57°-∠ABP=α+180°-(2α+57°)-∠CBP,
∵PB平分∠ABC,
∴∠ABP=∠CBP,
∴2α+57°=α+180°-(2α+57°),
解得α=22°,
故选:D.
6.解:两条平行线被第三条直线所截,同位角的平分线平行,①是假命题;
在同一平面内,垂直于同一条直线的两条直线互相平行,②是假命题;
过直线外一点有且只有一条直线与已知直线平行,③是假命题;
对顶角相等,邻补角互补,④是真命题;
故选:A.
7.解:过C作CF∥AB,
∵AB∥DE,
∴AB∥DE∥CF,
∴∠1=∠β,∠α=180°-∠2,
∴∠α-∠β=180°-∠2-∠1=180°-∠BCD=90°,
故选:D.
8.解:∵四边形ABCD为长方形,
∴AD∥BC,
∴∠BFE=∠DEF=25°.
由翻折的性质可知:
图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,
图3中,∠CFE=∠BFC-∠BFE=105°.
故选:A.
9.解:如图(1),∵AB∥DE,∴∠A=∠1=60°,
∵AC∥EF,∴∠E=∠1,
∴∠A=∠E=60°.
如图(2),∵AC∥EF,∴∠A=∠1=60°,
∵DE∥AB,∴∠E+∠1=180°,
∴∠A+∠E=180°,
∴∠E=180°-∠A=180°-60°=120°.
故一个角是60°,则另一个角是60°或120°.
故选:C.
二.填空题
10.解:如图,a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,
∴a1⊥a2,a1⊥a3,a1∥a4,a1∥a5,
依此类推,a1⊥a6,a1⊥a7,a1∥a8,a1∥a9,
∵2018÷4=504…2,
∴a1⊥a2018.
故答案是:a1⊥a2018.
三.解答题
11.解:(1)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-80°=100°,
∴∠ABP+∠PBN=100°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=100°,
∴∠CBD=∠CBP+∠DBP=50°;
(2)不变,∠APB:∠ADB=2:1.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
(3)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
由(1)可知∠ABN=100°,∠CBD=50°,
∴∠ABC+∠DBN=50°,
∴∠ABC=25°.
12.解:(1)如图1,过B作BG∥CN,
∴∠C=∠CBG
∵AB⊥BC,
∴∠CBG=90°-∠ABG,
∴∠C=90°-∠ABG,
∵BG∥CN,AM∥CN,
∴AM∥BG,
∴∠DBG=90°=∠D,
∴∠ABD=90°-∠ABG,
∴∠ABD=∠C;
(2)①如图2,设∠DBE=∠EBA=x,则∠BCN=2x,∠FCB=5x,
设∠ABF=y,则∠BFC=1.5y,
∵BF平分∠DBC,
∴∠FBC=∠DBF=2x+y,
∵∠AFB+∠BCN=∠FBC,
∴∠AFB+2x=2x+y,
∴∠AFB=y=∠ABF;
②∵∠CBE=90°,AF∥CN,
∴∠ABG+∠CBG=90°,∠BCN+∠AFB+∠BFC+∠BCF=180°,
∴,
∴,
∴∠CBE=3x+2y=3×30°+2×15°=120°.
13.解:(1)如图2所示,
猜想:∠EGF=90°;
证明:由材料中的结论得∠EGF=∠BEG+∠GFD,
∵EG、FG分别平分∠BEF和∠EFD,
∴∠BEF=2∠BEG,∠EFD=2∠GFD,
∵BE∥CF,
∴∠BEF+∠EFD=180°,
∴2∠BEG+2∠GFD=180°,
∴∠BEG+∠GFD=90°,
∵∠EGF=∠BEG+∠GFD,
∴∠EGF=90°;
(2)证明:如图3,过点G1作G1H∥AB,
∵AB∥CD,∴G1H∥CD,
由结论可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,
∴∠3=∠G2FD,
∵FG2平分∠EFD,
∴∠4=∠G2FD,
∵∠1=∠2,
∴∠G2=∠2+∠4,
∵∠EG1F=∠BEG1+∠G1FD,
∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,
∵AB∥CD,
∴∠BEF+∠EFD=180°,
∴∠EG1F+∠G2=180°.
14.解:∠AEC=2∠AFC.理由:
如图,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,
∴∠AEG=∠BAE,∠CEG=∠DCE,
∴∠AEC=∠AEG+∠CEG=∠BAE+∠DCE,
同理可得∠AFC=∠BAF+∠DCF,
∵∠BAE,∠DCE的平分线相交于点F,
∴∠BAE=2∠BAF,∠DCE=2∠DCF,
∴∠AEC=2(∠BAF+∠DCF)=2∠AFC.
15.解:(1)∠3+∠1=∠2成立,理由如下:
如图①,过点P作PE∥l1,
∴∠1=∠AEP,
∵l1∥l2,
∴PE∥l2,
∴∠3=∠BPE,
∵∠BPE+∠APE=∠2,
∴∠3+∠1=∠2;
(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2,理由为:
如图②,过P作PE∥l1,
∴∠1=∠APE,
∵l1∥l2,
∴PE∥l2,
∴∠3=∠BPE,
∵∠BPE-∠APE=∠2,
∴∠3-∠1=∠2.
16.解:(1)辅助线:过点P作PN∥EF交AB于点N.
分析思路:
①欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;
②欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数和;
③又已知∠1的度数,所以只需求出∠2的度数;
④由已知EF⊥AB,可得∠4=90°;
⑤由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;
⑥从而可以求出∠EFG的度数.
(2)如图,过点O作ON∥FG,
∵ON∥FG,
∴∠EFG=∠EON∠1=∠ONC=30°,
∵AB∥CD,
∴∠ONC=∠BON=30°,
∵EF⊥AB,
∴∠EOB=90°,
∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120°.
17.解:(1)过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=180°-∠A=50°,∠CPE=180°-∠C=60°,
∴∠APC=50°+60°=110°;
(2)∠CPD=∠α+∠β,理由如下:
如图3,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β;
(3)当P在BA延长线时,∠CPD=∠β-∠α;
理由:如图4,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当P在BO之间时,∠CPD=∠α-∠β.
理由:如图5,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
18.解:(1)如图1,延长EP交CD于M,
∵AB∥CD,
∴∠AEP=∠GMP,
∵∠EPG是△PGM的外角,
∴∠EPG=∠PMG+∠PGC=∠AEP=∠PGC;
(2)如图1,连接EG,
∵GE平分∠PEF,
∴∠PEG=∠FEG,
设∠AEP=α,∠PGC=β,则∠PGE=110°-α,∠EFG=2β,
∵AE∥CG,∠AEP+∠PGE=110°,
∴∠PEG+∠PGC=180°-110°=70°,即∠PEG=70°-β,
∵∠CGE是△EFG的外角,
∴∠FEG=∠CGE-∠EFG=β+(110°-α)-2β=110°-α-β,
70°-β=110°-α-β,
解得α=40°,
∴∠AEP=40°;
(3)如图2,∵EF平分∠PEB,
∴可设∠BEF=∠PEF=α,
∵AB∥CD,
∴∠GFE=∠BEF=α,
∴四边形PGFE中,∠PGF=360°-∠P-2α,
∴∠PGC=180°-(360°-∠P-2α)=∠P+2α-180°,
∵∠EFG是△FGH的外角,
∴∠FGH=∠EFG-∠EHG=α-∠EHG,
又∵QG平分∠PGC,
∴∠PGC=2∠FGH,
即∠P+2α-180°=2(α-∠EHG),
整理可得,∠P+2∠EHG=180°.
故答案为:∠P+2∠EHG=180°.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)