北师大版 初中数学 九年级上册 第二章
解一元二次方程 配方法 专练
(1)x2 +8x-9 = 0 (2)x2 -10x +25 = 7
(3)x2 -14x = 8 (4)x2+3x =1
(5)x2 +2x +2 = 8x +4 (6)x2 +12x +25 = 0
(7)x2 +4x =10 (8)x2 - 6x =11
(9)x2 -9x +19 = 0 (10)3x2 +8x -3 = 0
(11)3x2 -9x +2 = 0 (12)4x2 -8x -3 = 0
(13)2x2+6 = 7x (14)5x2 -18 = 9x
北师大版 初中数学 九年级上册 第二章
解一元二次方程 公式法 专练
2
(1)x2 - 7x -18 = 0 (2)4x +1 = 4x.
(3)25x2 +20x +4 = 0 (4)2x2 +5 = 7x
(5)4x(x -1)+3 = 0 (6)2x2 -9x +8 = 0
(7)9x2 +6x +1 = 0 (8)(y +1)(4y +1) = 2y
(9)4(y2 + 0.09) = 2.4y (10)16x2 +8x = 3
(11)x(x - 3)+5 = 0 (12)2 x 2 - 4 x - 1
3
(13)5 x + 2 = 3 x 2 (14)0.2 x 2 + 5 = x
2
北师大版 初中数学 九年级上册 第二章
解一元二次方程 因式分解法 专练
(1)5x2 = 4x (2)x(x - 2) = x - 2
(3)x2 - 4 = 0 (4)(x +1)2 - 25 = 0.
(5)(4x -1)(5x +7)= 0 (6)x(x +2) = 3x +6
(7)(2x +3)2 = 4(2x +3) (8)2(x -3)2 = x2 -9
(9)5(x2 - x) = 3(x2 + x) (10)(x - 2)2 = (2x +3)2
(11)(x - 2)(x -3)=12 (12)2x +6 = (x +3)2
(13)2y2 +4y = y +2
答案:
北师大版 初中数学 九年级上册 第二章
解一元二次方程 配方法 专练
(1)x2 +8x-9 = 0
解:移项,得: x2 +8x = 9
配方,得:x2 +8x +42 = 9+42
2
即: (x + 4) = 25
开方,得: x +4 = ±5
所以, x1 =1, x2 = -9
(2)x2 -10x +25 = 7
解:移项,得: x2 -10x = -18
配方,得: x2 -10x +52 = -18+52
2
即: (x - 5) = 7
开方,得: x - 5 = ± 7
所以, x1 = 5+ 7, x2 = 5- 7.
(3)x2 -14x = 8
解:配方,得: x2 -14x +72 = 8+72
2
即: (x - 7) = 57
开方,得: x - 7 = ± 57
所以, x1 = 7 + 57, x2 = 7 - 57.
(4)x2+3x =1
2
x2 3 3
2
解:配方,得: +3x + =1+
2 2
3 2 13
即: x + =
2 4
3 13
开方,得: x + = ±
2 2
x 3 13 3 13所以, 1 = - + , x2 = - - .2 2 2 2
(5)x2 +2x +2 = 8x +4
解:移项,得:x2 - 6x = 2
配方,得: x2 - 6x +32 = 2+32
即: (x -3)2 =11
开方,得: x -3 = ± 11
所以, x1 = 3+ 11, x2 = 3- 11.
(6)x2 +12x +25 = 0
解:移项,得: x2 +12x = -25
配方,得: x2 +12x +62 = -25+62
2
即: (x +6) =11
开方,得: x +6 = ± 11
所以, x1 = -6 + 11, x2 = -6 - 11.
(7)x2 +4x =10
解: 配方,得: x2 +4x +22 =10+22
即: (x +2)2 =14
开方,得: x +2 =± 14
所以, x1 = -2+ 14, x2 = -2- 14.
(8)x2 - 6x =11
解: 配方,得: x - 6x +32 =11+32
2
即: (x - 3) = 20
开方,得: x - 3 = ±2 5
所以, x1 = 3+ 2 5, x2 = 3- 2 5.
(9)x2 -9x +19 = 0
解:移项,得: x2 -9x = -19
9 2 9 2
配方,得: x2 -9x + = -19+
2 2
9 2 5
即: x - =
2 4
9 5
开方,得: x - =±
2 2
9 5 9 5
所以, x1 = + , x = - .2 2 2 2 2
(10)3x2 +8x -3 = 0
8
解:两边同时除以3,得:x2 + x -1= 0
3
移项,得: x2 +8x =1
2 2
配方,得: x2 +8x 4 4+ =1+
3 3
4 2 25
即: x + =
3 9
4 5
开方,得: x + = ±
3 3
所以, x 11 = , x = -3.3 2
(11)3x2 -9x +2 = 0
2
解:化系数为 1,得: x2 -3x + = 0
3
3 2 3 2 2
配方,得: x2 - 3x + - + = 0
2 2 3
3 2 19
即: x - - = 0
2 12
3 2x 19移项,得: - =
2 12
3 57
开方,得: x - = ±
2 6
3 57 3 57
所以, x1 = + , x2 = - .2 6 2 6
(12)4x2 -8x -3 = 0
3
解:化系数为 1,得: x2 - 2x - = 0
4
3
配方,得: x2 - 2x +12 -12- = 0
4
7
即: (x -1)2 - = 04
2 7
移项,得: (x -1) = 4
开方,得: x -1 7=±
2
7 7
所以, x1 =1+ , x2 =1- .2 2
(13)2x2+6 = 7x
解:化系数为 1,得: x2 +3 7= x
2
7
移项,得: x2 - x = -3
2
7 7 2 7 2
配方,得: x2 - x + = -3+
2 4 4
7 2 1
即: x - =
4 16
7 1
开方,得: x - =±
4 4
3
所以, x1 = 2, x2 = .2
(14)5x2 -18 = 9x
解:移项,得: 5x2 -9x =18
化系数为 1,得: x2 9- x 18=
5 5
9 2 2
配方,得: x2 - x 9 18 9+ = +
5 10 5 10
9 2 441
即: x - =
10 100
9 21
开方,得: x - = ±
10 10
6
所以, x1 = 3, x2 = - .5
配方法的一般步骤:
(1)移:移项,使方程左边为二次项和一次项,右边为常数项;
(2)配:配方,方程两边都加上一次项系数一半的平方,使原
2
方程变为 (x +m) = n(n ? 0) 的形式;
(3)开:开平方,如果方程的右边是非负数.就可以左右两边开
平方得 x +m = ± n
(4)解:方程的解 x = -m± n,为 实际问题中,还要检验得
到得结果是否合理.
配方法的易错点:
①配方时,漏项;
②开方时,丢符号.
配方法的适用范围:
所有一元二次方程,特别是首项系数为 1 的.
北师大版 初中数学 九年级上册 第二章
解一元二次方程 公式法 专练
(1)x2 - 7x -18 = 0
解:这里 a =1,b = -7,c = -18.
?b2 - 4ac = (-7)2 - 4 1 (-18) =121> 0,
\ x 7 121 7 11= = ,
2?1 2
即 x1 = 9, x2 = -2.
(2)4x2 +1 = 4x.
解:将原方程化为一般形式,得:
4x2 - 4x +1= 0.
这里 a = 4,b = -4,c =1.
?b2 - 4ac = (-4)2 - 4 4 1= 0,
x 4±0 1\ = = ,
2?4 2
1
即:x1 = x2 = .2
(3)25x2 +20x +4 = 0
解:这里a = 25,b = 20,c = 4,
?b2 - 4ac = 202 - 4 25 4 = 0,
x -20± 0 2\ = = - .
2?25 5
x x 2即: 1 = 2 = - .5
(4)2x2 +5 = 7x
解: 原方程的一般形式为:
2x2 - 7x +5 = 0.
这里a = 2,b = -7,c = 5,
\b2 - 4ac = (-7)2 - 4 2 5 = 9 > 0,
x 7 9 7 3\ = = .
2?2 4
x 5即: 1 =1, x2 = .2
(5)4x(x -1)+3 = 0
解: 原方程的一般形式为:
4x2 - 4x +3 = 0.
?a = 4,b = -4,c = 3,
\b2 - 4ac =( 4)2- - 4 4 3 = -32 < 0,
\方程没有实数根.
(6)2x2 -9x +8 = 0
解:?a = 2,b = -9,c = 8.
\b2 - 4ac = (-9)2 - 4 2 8 =17 > 0,
x 9 17 9 17\ = = ,
2?2 4
x 9 + 17即 1 = , x
9 - 17
2 = .4 4
(7)9x2 +6x +1 = 0
解:?a = 9,b = 6,c =1.
\b2 - 4ac = 62 - 4 9 1= 0,
x -6±0 1\ = = - ,
2?9 3
1
即 x1 = x2 = - .3
(8)(y +1)(4y +1) = 2y
解: 原方程的一般形式为:
4y2 +3y +1= 0.
?a = 4,b = 3,c =1,
\b2 - 4ac = 32 - 4 4 1= -7 < 0,
\方程没有实数根.
(9)4(y2 + 0.09) = 2.4y
解: 原方程的一般形式为:
y2 - 0.6y +0.09 = 0.
这里a =1,b = -0.6,c = 0.09,
\b2 - 4ac = ( 2-0.6) - 4 1 0.09 = 0,
y 0.6±0\ = = 0.3.
2?1
即:y1 = y2 = 0.3.
(10)16x2 +8x = 3
解: 原方程的一般形式为:
16x2 +8x -3 = 0.
这里a =16,b = 8,c = -3,
\b2 - 4ac = 82 - 4 16 (-3) = 256 > 0,
\ x -8± 256 -1±2= = .
2?16 4
x 1 3即: 1 = , x2 = - .4 4
(11)x(x - 3)+5 = 0
解: 原方程的一般形式为:
x2 -3x +5 = 0.
这里a =1,b = -3,c = 5,
\b2 - 4ac = (-3)2 - 4 1 5 = -11< 0,
\方程没有实数根.
(12)2 x 2 - 4 x - 1
解: 这里a = 2,b = -4,c = -1,
\b2 - 4ac = (-4)2 - 4 2 (-1) = 24 > 0,
x 4 24 2 6\ = = .
2?2 2
6 6
即:x1 =1+ , x2 =1- .2 2
(13)5 x + 2 = 3 x 2
解: 原方程的一般形式为:
3x2 -5x - 2 = 0.
这里a = 3,b = -5,c = -2,
\b2 - 4ac = (-5)2 - 4 3 (-2) = 49 > 0,
x 5 49 5 7\ = = .
2?3 6
x 2, x 1即: 1 = 2 = - .3
(14)0.2 x 2 5 3+ = x
2
解: 原方程的一般形式为:
0.2x2 3- x +5 = 0.
2
3
这里a = 0.2,b = - ,c = 5,
2
2
\b2 3 7- 4ac = - - 4 0.2 5 = - < 0,
2 4
\方程没有实数根.
公式法的一般步骤:
(1)把方程化为一般形式,确定a,b,c的值;
(2)求出b2 - 4ac的值;
(3)当b2 - 4ac≥0时,把a,b,c及 b2 - 4ac代入求根公式
2
x -b± b - 4ac = ,求出x , x .
2a 1 2
公式法的易错点:
①确定系数时,没有化为一般形式;
②用求根公式时,没有判定根的情况.
公式法的适用范围:
所有一元二次方程,判别式能够开出有理数的.
北师大版 初中数学 九年级上册 第二章
解一元二次方程 因式分解法 专练
(1)5x2 = 4x
解:原方程可变形为:
5x2 - 4x = 0.
x(5x - 4) = 0.
x = 0,或5x - 4 = 0.
x 0, x 41 = 2 = .5
(2)x(x - 2) = x - 2
解:原方程可变形为:
x(x - 2)-(x - 2) = 0.
(x - 2)(x -1) = 0.
x - 2 = 0,或x -1= 0.
x1 = 2, x2 =1.
(3)x2 - 4 = 0
解:原方程可变形为:
(x +2)(x - 2) = 0.
x +2 = 0,或x - 2 = 0.
x1 = -2, x2 = 2.
(4)(x +1)2 - 25 = 0.
解:原方程可变形为:
(x - 4)(x +6) = 0.
x - 4 = 0,或x +6 = 0.
x1 = 4, x2 = -6.
(5)(4x -1)(5x +7)= 0
解:4x -1= 0,或5x +7 = 0.
x 11 = , x
7
= - .
4 2 5
(6)x(x +2) = 3x +6
解:原方程可变形为:
x(x +2)-3(x +2) = 0.
(x -3)(x +2) = 0.
x -3 = 0,或x +2 = 0.
x1 = 3, x2 = -2.
(7)(2x +3)2 = 4(2x +3)
解:原方程可变形为:
(2x 3)2+ - 4(2x +3) = 0.
(2x +3)(2x -1) = 0.
2x +3 = 0,或2x -1= 0.
x 3 11 = - , x2 = .2 2
(8)2(x -3)2 = x2 -9
解:原方程可变形为:
2(x -3)2 -(x +3)(x -3) = 0.
(x -3)(x -9) = 0.
x -3 = 0,或x -9 = 0.
x1 = 3, x2 = 9.
(9)5(x2 - x) = 3(x2 + x)
解:原方程可变形为:
2x2 -8x = 0.
2x(x - 4) = 0.
2x = 0,或x - 4 = 0.
x1 = 0, x2 = 4.
(10)(x - 2)2 = (2x +3)2
解:原方程可变形为:
(x - 2)2 -(2x +3)2 = 0
(3x +1)(-x -5) = 0
3x +1= 0,或 - x -5 = 0.
x 11 = - , x2 = -5.3
(11)(x - 2)(x -3)=12
解:原方程可变形为:
x2 -5x - 6 = 0
(x +1)(x - 6) = 0
x +1= 0,或x - 6 = 0.
x1 = -1, x2 = 6.
(12)2x +6 = (x +3)2
解:原方程可变形为:
(x +3)2 - 2(x +3) = 0
(x +3)(x +1) = 0
x +3 = 0,或x +1= 0.
x1 = -3, x2 = -1.
(13)2y2 +4y = y +2
解:原方程可变形为:
2y2 +3y - 2 = 0
(y +2)(2y -1) = 0
y +2 = 0,或2y -1= 0.
y1 = -2, y
1
2 = .2
因式分解法的一般步骤:
(1)右化零:方程右边=0;
(2)左分解:方程左边分解;
(3)两因式:得两个一元一次方程;
(4)各求解:写出两个方程的解.
因式分解法的易错点:
①分解因式时,因式分解错误;
②写解时,丢“或”字.
因式分解法的适用范围:
方程右边=0 时,左边可以用“提公因式法”、“公式法”、“十字相乘
法”因式分解的.