第1章用统计思想研究分子运动4无序中的有序5用统计思想解释分子运动的宏观表现课件+精练含解析(3份打包)沪教版选修3-3

文档属性

名称 第1章用统计思想研究分子运动4无序中的有序5用统计思想解释分子运动的宏观表现课件+精练含解析(3份打包)沪教版选修3-3
格式 zip
文件大小 4.9MB
资源类型 教案
版本资源 沪科版
科目 物理
更新时间 2020-05-16 21:24:57

文档简介







无序中的有序 用统计思想解释分子运动的宏观表现
 1.了解气体分子运动的统计规律,知道气体分子运动的特点.(重点) 2.学会用直方图的方法说明气体分子的速率分布. 3.知道温度是分子平均动能的标志,知道气体压强产生的原因.(重点) 4.学会用微观统计规律解释温度和气体压强.(重点+难点)
,        一、气体分子运动的特点
1.通常状况下气体分子间的距离比较大(r>10r0),相互之间的作用力很小,因此可以忽略气体分子间的相互作用,认为气体分子除了相互碰撞或跟器壁碰撞外,不受力的作用,在空间自由运动.因此,气体能够充满它所能到达的空间,没有一定的体积和形状.
2.气体分子在不断的碰撞中频繁地改变着方向和速率的大小,做着杂乱无章的运动.由于分子数目是大量的,分子运动是杂乱无章的,所以,大量分子沿各个方向运动的机会是均等的.
二、无序中的有序
1.伽尔顿板实验:小球落入某个小格完全是一个随机的偶然事件,但多次重复操作可以发现,槽中各小格中落入的小球数目有着一定的分布规律——始终是落入中间格子的小球数目多,两边格子中的小球数目少.
2.从伽尔顿的实验中可以得到启示:对于由大量微观粒子组成的系统,就其宏观性质而言,统计规律起着主导作用.
三、气体分子运动的统计规律
1.1859年,英国著名物理学家麦克斯韦运用统计方法,找到了气体分子速率的分布函数,从而确定了气体分子速率的分布规律.这个规律指出,在一定状态下,气体的大多
数分子的速率都在某一固定数值附近,速率离开这个数值越远,具有这种速率的分子就越少,即气体分子速率总体上是呈现出“中间多,两头少”的分布特征,很像伽尔顿板实验中各小格中落入小球数目的分布.
2.麦克斯韦的方法在物理学思想史上具有重要意义,它向人们指出,对于一个由大量微观粒子组成的系统,利用统计方法,一旦找出某个微观量的分布函数,便可求出这个微观量的统计平均值,而这个统计平均值正好等于该系统的相应宏观量.这样,就把分子的微观运动跟物体的宏观表现紧密地联系起来了.因此,人们称颂麦克斯韦的统计方法“标志着物理学新纪元的开始”.
四、温度与气体压强
1.物理学上把分子的无规则运动称为热运动.从分子动理论的观点看,微观分子运动决定着宏观的温度,温度是系统内所有分子热运动的平均动能的标志.
2.温度是组成物质的大量分子的热运动的集体表现,它具有统计意义,对单个分子来说,温度是没有意义的.
3.气体压强产生的原因:大量做无规则热运动的分子对器壁频繁、持续地碰撞产生了气体的压强.单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地撞击器壁,就对器壁产生持续、均匀的压力.所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积的平均作用力.

 气体分子运动特点
1.气体分子间距离较大:标准状况下,气体分子间的距离约为分子直径的10倍左右,分子间作用力非常微弱.在理想气体的处理方法中,通常把气体分子看成一个个小球,分子之间除相互碰撞的力外不受任何力作用,可以在空间内自由移动,从而充满容器的整个空间.
2.分子间碰撞频繁:在标准状况下,一个空气分子在1 s内与其他分子碰撞竟达65亿次之多,频繁的碰撞造成了气体分子做杂乱无章的热运动,气体分子不断地改变运动方向,每个气体分子可自由运动的行程极短,通常状况下,气体分子自由运动行程的数量级为10-8 m.
3.气体分子速率分布规律
(1)麦克斯韦速率分布规律:在一定的温度下,不管个别分子怎样运动,气体中的大多数分子的速率都在某个数值附近,表现出“中间多、两头少”的分布规律.
(2)分布规律与温度的关系:当温度升高时,“中间多、两头少”的分布规律不变,气体分子的速率增大,分布曲线的峰值向速率大的一方移动.(如图所示)

麦克斯韦速率分布规律
 如图,横坐标v表示分子速率,纵坐标f(v)表示各等间隔速率区间的分子数占总分子数的百分比.图中曲线能正确表示某一温度下气体分子麦克斯韦速率分布规律的是(  )

A.曲线①          B.曲线②
C.曲线③ D.曲线④
[解析] 在气体系统中,速率很小、速率很大的分子较少,中等速率的分子所占比率较大,符合正态分布.速率曲线应如曲线④.
[答案] D

气体分子速度分布规律
(1)在一定温度下,所有气体分子的速率都呈“中间多、两头少”的分布;
(2)温度越高,速率大的分子所占比例越大;
(3)温度升高,气体分子的平均速率变大,但具体到某一个气体分子,速率可能变大也可能变小,无法确定. 
 (多选)下列关于气体分子运动的说法正确的是(  )
A.分子除相互碰撞或跟容器壁碰撞外,可在空间自由移动
B.分子的频繁碰撞致使它做杂乱无章的热运动
C.分子沿各个方向运动的机会相等
D.分子的速率分布毫无规律
解析:选ABC.分子的频繁碰撞使其做杂乱无章的无规则运动,除碰撞外,分子可在空间内自由移动,A、B对.大量分子的运动遵守统计规律,如分子向各方向运动机会均等,分子速率分布呈“中间多,两头少”的规律,C对,D错.
 温度及气体压强的微观解释
1.温度的微观解释
(1)温度在宏观上体现为物体的冷热程度,由于受热传导等因素的影响,这个定义有一定的主观意识.
(2)把温度定义为“物体内所有分子热运动平均动能的标志”,能客观地反映不同温度物体内分子运动的剧烈程度,并能在理论上给出精确的量度关系.
(3)温度从分子动理论角度可以做如下理解:
①温度是大量分子集体行为的反映,具有统计意义,温度对单个分子是没有意义的.
②不同物体在相同温度下,物体内分子热运动的平均动能都相同,但不同物质的分子平均速度的大小一般不同.
③温度升高时,物体内分子的平均动能一定增大,但并不是每个分子的动能都增大,同理,温度降低,分子的平均动能一定减少,但并不是每个分子的动能都会减少.
2.气体压强的微观解释
(1)气体压强的产生:大量做无规则热运动的分子对器壁频繁、持续地碰撞产生了气体的压强.单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力.所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力.
(2)微观因素:气体压强由气体分子的密集程度和平均动能决定.A气体分子的密集程度(即单位体积内气体分子的数目)大,在单位时间内,与单位面积器壁碰撞的分子数就多;B气体的温度高,气体分子的平均动能变大,每个气体分子与器壁的碰撞(可视为弹性碰撞)给器壁的冲力就大;从另一方面讲,气体分子的平均速率大,在单位时间里撞击器壁的次数就多,累计冲力就大.
 对于一定质量的气体,下列四个论述中正确的是(  )
A.当分子热运动变剧烈时,压强必增大
B.当分子热运动变剧烈时,压强可以不变
C.当分子间平均距离变大时,压强必变大
D.当分子间平均距离变大时,压强必变小
[思路点拨] 解答本题应注意以下两点:
(1)气体分子的平均动能.
(2)气体分子的密集程度.
[解析] 分子热运动变剧烈,表明气体温度升高,分子平均动能增大,但不知气体的分子密集程度如何变化,故压强的变化趋势不明确,A错、B对;分子间平均距离变大,表明气体的分子密集程度变小,但因不知此时分子的平均动能如何变,故气体的压强不知如何变化,C、D错.
[答案] B

解气体压强的技巧
(1)明确气体压强产生的原因——大量做无规则运动的分子对器壁频繁持续的碰撞.压强就是大量气体分子作用在器壁单位面积上的平均作用力;
(2)明确气体压强的决定因素——气体分子的密集程度与平均动能;
(3)只有知道了以上两个因素的变化,才能确定压强的变化,任何单个因素的变化都不能决定压强是否变化. 
 气体压强与大气压强、液体压强的区别
1.气体压强:因密闭容器中的气体密度一般很小,由气体自身重力产生的压强极小,可忽略不计,故气体对器壁的压强由气体分子对器壁的碰撞产生,大小由气体分子的密集程度和温度决定,与地球的引力无关,气体对器壁上下左右的压强是大小相等的.
2.大气压强:大气压强从微观上说是由于大气分子频繁撞击地面的结果,从宏观上说是由于空气受到重力作用紧紧包围地球而对浸在它里面的物体产生的压强.如果没有地球引力作用,地球表面就没有大气,从而也不会有大气压,地面大气压的值与地球表面积的乘积,近似等于大气层所受的重力值.
3.液体压强:液体压强是由于自身重力所产生的,失重后将不再产生压强.
 如图所示,两个完全相同的圆柱形密闭容器,甲中装有与容器容积相等的水,乙中充满空气,试问:
(1)两容器各侧壁压强的大小关系及压强的大小决定于哪些因素?(容器容积恒定)
(2)若让两容器同时做自由落体运动,容器侧壁上所受压强将怎样变化?

[解析] (1)对甲容器,上壁的压强为零,底面的压强最大,其数值为p=ρgh(h为上、下底面间的距离).侧壁的压强自上而下,由小变大,其数值大小与侧壁上各点距水面的竖直距离x的关系是p=ρgx.对乙容器,各处器壁上的压强大小都相等,其大小决定于气体的分子密度和温度.
(2)甲容器做自由落体运动时器壁各处的压强均为零.乙容器做自由落体运动时,器壁各处的压强不发生变化.
[答案] 见解析

[随堂检测]
1.教室内的气温会受到室外气温的影响,如果教室内上午10时的温度为15 ℃,下午2时的温度为25 ℃,假设大气压强无变化,则下午2时与上午10时相比较,房间内的 (  )
A.空气分子密集程度增大
B.空气分子的平均动能增大
C.空气分子的速率都增大
D.空气质量增大
解析:选B.温度升高,气体分子的平均动能增大,平均每个分子对器壁的冲力将变大,但气压并未改变,可见单位体积内的分子数一定减小,故A项、D项错误,B项正确;温度升高,并不是所有空气分子的速度都增大,C项错误.
2.(多选)x、y两容器中装有相同质量的氦气,已知x容器中氦气的温度高于y容器中氦气的温度,但压强却小于y容器中氦气的压强,由此可知 (  )
A.x容器中氦气分子的平均动能一定大于y容器中氦气分子的平均动能
B.x容器中每个氦气分子的动能一定都大于y容器中每个氦气分子的动能
C.x容器的容积一定小于y容器的容积
D.x容器中氦气分子的热运动一定比y容器中氦气分子的热运动剧烈
解析:选AD.温度越高,分子热运动越剧烈,分子平均动能越大,故A、D正确,B错误;分子密度越大,平均动能越大,则压强越大.两容器中分子数相同,x容器中氦气分子的平均动能大于y容器中氦气分子的平均动能,但压强却小,说明x容器中氦气分子密度小于y容器中氦气分子密度,即y容器容积小,故选项C错误.
3.下列说法正确的是(  )
A.气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力
B.气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均作用力
C.气体分子热运动的平均动能减小,气体的压强一定减小
D.单位体积的气体分子数增加,气体的压强一定增大
解析:选A.气体压强为气体分子对器壁单位面积的撞击力,故A正确,B错误;气体压强的大小与气体分子的平均动能和气体分子密集程度有关,故C、D错误.
4.如图是氧气分子在不同温度(0 ℃和100 ℃)下的速率分布,由图可得信息正确的是(  )

A.同一温度下,氧气分子速率呈现出“中间多,两头少”的分布规律
B.随着温度的升高,每一个氧气分子的速率都增大
C.随着温度的升高,氧气分子中速率小的分子所占的比例升高
D.随着温度的升高,氧气分子的平均速率变小
解析:选A.同一温度下,氧气分子速率呈现出“中间多,两头少”的分布规律,选项A正确.随着温度的升高,氧气分子的平均速率变大,氧气分子中速率小的分子所占的比例减小,但不是每一个氧气分子的速率都增大,选项B、C、D错误.
[课时作业]
一、单项选择题
1.一定质量的气体,在等温状态变化过程中,发生变化的是(  )
A.分子的平均速率
B.单位体积内的分子数
C.分子的平均动能
D.分子总数
解析:选B.气体的质量不变则分子总数不变,故D项错.温度不变则分子的平均动能不变,平均速率不变,故A、C均错.等温变化中体积变化而分子总数不变,故单位体积内的分子数变化,B项正确.
2.对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则(  )
A.当体积减小时,N必定增加
B.当温度升高时,N必定增加
C.当压强不变而体积和温度变化时,N必定变化
D.当压强不变而体积和温度变化时,N可能不变
解析:选C.由于气体压强是大量气体分子对器壁的碰撞作用而产生的,其值与分子密度ρ及分子平均速率有关.对一定质量的气体,压强与温度和体积有关.若压强不变而温度发生变化时,或体积发生变化时,即分子密度发生变化时,N一定变化,故C正确,D错.而V减小温度也减小时,N不一定增加,A错.当温度升高时,同时体积增大,则N不一定增加,故B项错.
3.在气体中,某一时刻向任一方向运动的分子都有,在任一时刻分子沿各个方向运动的机会是均等的,气体分子沿各个方向运动的数目应该是相等的,对上面所说的“数目相等”的理解正确的是(  )
A.是通过多次做实验而得出的结论,与实际数目不会有出入
B.是通过精确计算而得出的结论
C.是对大量分子用统计方法得到的一个统计平均值,与实际数目会有微小的差别
D.分子数越少,用统计方法得到的结果跟实际情况越符合
解析:选C.单个分子在某一时刻的速率大小具有偶然性,大量分子频繁碰撞,对大量分子来说向各个方向运动几率是相等的,遵循统计规律,而不是精确的计算.
4.下面的表格是某地区1~7月份气温与气压的对照表:
月份/月 1 2 3 4 5 6 7
平均最高气温/℃ 1.4 3.9 10.7 19.6 26.7 30.2 30.8
平均大气压/105 Pa 1.021 1.019 1.014 1.008 1.003 0.998 4 0.996 0
7月份与1月份相比较,正确的是(  )
A.空气分子无规则热运动的情况不变
B.空气分子无规则热运动减弱了
C.单位时间内空气分子对地面的撞击次数增多了
D.单位时间内空气分子对单位面积的地面撞击次数减少了
解析:选D.温度升高了分子的无规则运动加剧,故A、B项均错.空气分子对地面的撞击更强烈了,但压强减小了,所以单位时间内气体分子对单位面积的撞击次数减少了,故D项正确.
二、多项选择题
5.关于麦克斯韦速率分布律对气体分子速率分布的解释,正确的是(  )
A.分子的速率大小与温度有关,温度越高,所有分子的速率都增大
B.分子的速率大小与温度有关,温度越高,分子的平均速率增大
C.气体分子的速率分布总体呈现出“中间多,两边少”的正态分布特征
D.气体分子的速率分布遵循统计规律,适应于大量分子
解析:选BCD.麦克斯韦气体速率分布规律是利用统计的观点研究得到的,规律表明所有气体分子的速率分布都是“中间多,两边少”的正态分布特征,分子的平均速率与温度有关,温度越高,平均速率增大,但并不是每个分子的速率都增大,故正确答案为B、C、D.
6.实验中测得某种气体的温度是0 ℃,一位同学据此提出了以下几个说法,其中正确的是(  )
A.该气体中分子的温度是0 ℃
B.该气体中,运动速率大的分子的温度一定高于0 ℃,运动速率小的分子的温度一定低于0 ℃
C.温度不变时,该气体中分子的平均速率不变
D.温度升高时,速率大的分子所占的比例会增大
解析:选CD.温度是物体内分子平均动能的标志,它具有统计的意义,是针对大量分子而言的.对单个分子没有实际意义,A、B都把温度看成单个分子所具有的量,都不正确.根据温度的微观意义,温度不变时,物体内所有分子的平均动能也不变.对于确定的气体,分子质量一定,因此分子的平均速率也不变.温度升高时,分子的平均动能增大,这是由于动能大的分子所占的比例增大造成的,对于确定的气体,意味着速率大的分子所占的比例增大.
7.一定质量的气体,下列叙述中正确的是(  )
A.如果体积减小而温度不变,气体分子在单位时间内对单位面积器壁的碰撞次数一定增大
B.如果压强增大而温度不变,气体分子在单位时间内对单位面积器壁的碰撞次数一定增大
C.如果温度升高,气体分子在单位时间内对单位面积器壁的碰撞次数一定增大
D.如果分子密度增大,气体分子在单位时间内对单位面积器壁的碰撞次数一定增大
解析:选AB.气体分子在单位时间内对单位面积器壁的碰撞次数,是由单位体积内的分子数和分子的平均速率共同决定的.选项A和D都是单位体积内的分子数增大,但A中气体分子的平均速率不变,D中分子的平均速率如何变化却不知道,故A正确、D错误;选项C由温度升高可知分子的平均速率增大,但单位体积内的分子数如何变化未知,C错误; B中压强增大而温度不变,必然体积减小,故单位时间内分子对器壁碰撞次数增大,B正确.
8.封闭在体积一定的容器内的理想气体,当温度升高时,下列说法正确的是(  )
A.气体分子的密度增大
B.气体分子的平均动能增大
C.气体分子的平均速率增大
D.气体分子的势能增大
解析:选BC.当体积不变温度升高时,其压强增大.故当T增大时,分子的平均动能增大,分子的平均速率增大,而分子的密度和分子势能都不变,故只有B、C正确.
三、非选择题
9.密闭在钢瓶中的理想气体,温度升高时压强增大.从分子动理论的角度分析,这是由于分子热运动的______增大了.该气体在温度T1、T2时的分子速率分布图像如图所示,则T1______T2(选填“大于”或“小于”).

解析:温度升高,分子热运动的平均动能增大,则分子中速率大的分子所占比例增大,结合题图可知T2>T1.
答案:平均动能 小于
10.从宏观上看,一定质量的气体仅温度升高或仅体积减小都会使压强增大,从微观上看,这两种情况有没有什么区别?
解析:因为一定质量的气体的压强是由单位体积内的分子数和气体的温度决定的.气体温度升高,即气体分子运动加剧,分子的平均速率增大,分子撞击器壁的作用力增大,故压强增大.气体体积减小时,虽然分子的平均速率不变,单个分子对容器的撞击力不变,但单位体积内的分子数增大,单位时间内撞击器壁的分子数增多,故压强增大,所以这两种情况下在微观上是有区别的.
答案:见解析







PAGE



10



(共25张PPT)
(共27张PPT)
第1章 用统计思想研究分子运动
1.4 无序中的有序
1.5 用统计思想解释分子运动的宏观表现
第1章 用统计思想研究分子运动
相互作用
方向
杂乱无章
均等
统计规律
偶然


统计
越少
“中间多,两头少”
分布函数
统计平均值
宏观
微观运动
宏观表现
平均动能
集体
碰撞
单位面积
预习导学新知探究
梳理知识·夯实基础
多维课堂,师生互动
突破疑难·讲练提升
f(o
低温分布
高温分布