19.1.2函数的图象
1、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( ).
2、小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里.下面图形中表示小红爷爷离家的时间与外出距离之间的关系是( )
3、正方向边长为3,若边长增加x则面积增加y,则y随x变化的函数解析式为____________,若面积增加了16 ,则变成增加了___________;
4、甲车速度为20米/秒,乙车速度为25米/秒,现甲车在乙车前面500米,设x秒后两车之间的距离为y米,则y随x变化的函数解析式为________________,自变量x的取值范围是______________;
5、函数自变量x的取值范围是 .
当x=5时,y= .
若点p在第二象限,且p点到x轴的距离为,到y轴的距离为1,则p点的坐标是 ,请写出一个函数,这个函数经过点P,则这个函数可以是: .
7、在所给的直角坐标系中画出函数y=x的图象(先填写下表,再描点、连线).
x -3 -2 -1 0 1 2 3
y
8、画出下列函数的图像
(1) (2)
9、某学校组织学生到炬力千米的博物馆无参观,小红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去博物馆,车租车的收费标准如下:
里程 收费
3千米及3千米以下 7.00
3千米以上,每增加1千米 2.00
请写出出租车行驶的里程数x(千米)与费用y(元)之间的函数关系式;
小红同学身上仅有14元钱,乘出租车到博物馆的车费够不够,请说明理由。
10、一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度。
t / 时 0 1 2 3 4 5
y / 米 10 10.5 10.10 10.15 10.20 10.25
由记录表推出这5小时中水位高度y(单位:米)岁时间t(单位:时)变化的函数解析式,并画出函数图像;
据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米?
11、拖拉机开始工作时,邮箱中有油30L,每小时耗油5L。
写出邮箱中的余油量Q(L)与工作时间t(h)之间的函数关系式;
求出自变量t的取值范围;
画出函数图象;
根据图像回答拖拉机工作2小时后,邮箱余油是多少?若余油10L,拖拉机工作了几小时?
12、已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.
(1)写出y与x的函数关系式;
(2)求自变量x的取值范围;
(3)当y=4时,x的值为多少?
(4)不画函数的图象.判断点(3,5)是否在这个函数的图象上.
13、某校办工厂现在年产值是15万元,计划今后每年增加
2万元.
写出年产值y(万元)与年数x之间的函数关系式;
画出函数图象;
求出5年后的年产值.
15、已知A(2,a)是函数y=2x+m与y=mx-2的图象的公共点,求m、a的值.
19.1.1变量与函数
学习过程:
问题一:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?
1.请同学们根据题意填写下表:
售出票数(张) 早场150 午场206 晚场310 x
收入y (元)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含x的式子表示y.__y=_________________x的取值范围是
这个问题反映了票房收入_________随售票张数_________的变化过程.
问题二:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为Sm2,怎样用含有x的式子表示S呢?
1.请同学们根据题意填写下表:
长x(m) 1 2 3 4 x
面积s(m2)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含x的式子表示s. _______________x的取值范围是
这个问题反映了矩形的___ _ 随_ __的变化过程.
小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的(如……),有些量的数值是始终不变的(如……)。
得出结论: 在一个变化过程中,我们称数值发生变化的量为________;
在一个变化过程中,我们称数值始终不变的量为________;
(一)观察探究:
1、在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制约的.
2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.)
归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。
3、其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:
(1)下图是体检时的心电图.其中图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每一个确定的值,y都有唯一确定的对应值吗?
(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表
(二)归纳概念:
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是_________,y是x的________.如果当x=a时y=b,那么b叫做当自变量的值为a时的_________.
举例说明:
问题一 问题二 问题三
自变量
自变量的函数
函数解析式
【达标拓展】
1、在男子1500米赛跑中,运动员的平均速度v= ,则这个关系式中变量是_______、_______,常量是________.自变量是 , 是 的函数,自变量的取值范围是
2、已知2x-3y=1,若把y看成x的函数,则可以表示为___________.其中变量是_____、_____,常量是________.自变量是 , 是 的函数,x的取值范围是
3、等腰△ABC中,AB=AC,则顶角y与底角x之间的函数关系式为_____________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,x的取值范围是
4、汽车开始行驶时油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q升与行驶时间t小时的关系是_____________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,t的取值范围是