5.4.3 分式方程 课件(24张PPT)+学案

文档属性

名称 5.4.3 分式方程 课件(24张PPT)+学案
格式 zip
文件大小 2.8MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2020-05-19 11:55:13

文档简介

(共24张PPT)
5.4.3 分式方程
北师大版 八年级下
上21世纪教育网 下精品教学资源
亲爱的同学们,请同学们回忆一下,解分式方程的一般步骤是?
复习导入
去分母
解整式方程
解分式方程的一般步骤
验根
化为整式方程
⑴把各分母分解因式;
⑵找出各分母的最简公分母;
⑶方程两边各项乘以最简公分母;
复习导入
做一做
某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元, 所有房屋出租的租金第一年为9.6万元, 第二年为10.2万元.
(1)你能找出这一情境中的等量关系吗?
(2)根据这一情境你能提出哪些问题?
(3)你能利用方程求出这两年每间房屋的租金各是多少吗?
做一做
某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多 500 元, 所有房屋出租的租金第一年为 9.6 万元, 第二年为 10.2 万元.
(1)你能找出这一情境中的等量关系吗?
1、第二年出租房屋间数=第一年出租房屋间数
2、第二年房屋租金=第一年房屋租金+500元
3、 出租房屋的总租金=每间房屋的租金×出租房屋间数
做一做
某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多 500 元, 所有房屋出租的租金第一年为 9.6 万元, 第二年为 10.2 万元.
(2)根据这一情境你能提出哪些问题?
1、分别求两年每间出租房屋的租金
2、求出租房屋的总间数
设出租房屋x间.
则根据题意列方程得:

解得:x=12.
经检验: x=12是原方程的解.
所以第一年租金为;96000÷12=8000
第二年租金为102000÷12=8500.

答:每年租金分别为8000元和8500元.
做一做
(3)你能利用方程求出这两年每间房屋的租金各是多少吗?
上21世纪教育网 下精品教学资源
新知讲解
例3.某市从今年1月1日起调整居民用水价格,每立方米水费涨价 .小丽家去年12月份的水费15元,而今年7月份的水费是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.
主要等量关系是:
水费÷用水价格=用水量
上21世纪教育网 下精品教学资源
新知讲解
例3.某市从今年1月1日起调整居民用水价格,每立方米水费涨价 .小丽家去年12月份的水费15元,而今年7月份的水费是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.
上21世纪教育网 下精品教学资源
新知讲解
分析:此题的主要等量关系是:小丽家今年7月份的用水量-小丽家去年?12?月份的用水量=5m 3 .所以,首先要表示出小丽家这两个月的用水量,而用水量可以用水费除以水的单价得出.
新知讲解
解:设该市去年居民用水的价格为x元/m3,则今年的水价为 元/m3,
根据题意,得
解这个方程,得
上21世纪教育网 下精品教学资源
新知讲解
经检验, 是所列方程的根.
所以,该市今年居民用水的价格为2元/m3.
(元/m3)
课堂练习
1、某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的度.如果设原计划每天铺设xm管道,那么根据题意,可列方程______ .
课堂练习
2、甲、乙两个工程队共同完成一项工程,乙队先单独做5天,再由两队合作3天就完成全部工程,已知甲队与乙队单独完成这项工程所需时间之比是3:2,求甲乙两队单独完成此项工程各需多少天?若设甲、乙单独完成此项工程分别需3x天、2x天,则可列方程为______.
课堂练习
3、小明的妈妈上周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场搞酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,问她上周三买了几瓶?
课堂练习
解:设上周三买了x瓶酸奶,则周三买的酸奶的单价为: ,

周日买的酸奶的单价为:




解得:x1=4,x2=-10(不合题意舍去),

经检验得出,x=4是原方程的根,

答:她上周三买了4瓶酸奶.
所列方程为:
课堂练习
驶向胜利的彼岸
某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?
课堂练习
驶向胜利的彼岸
解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有

解得x=120,
经检验,x=120是原方程的解,且符合题意.
答:该商家购进的第一批衬衫是120件.
课堂练习
驶向胜利的彼岸
(2)3x=3×120=360,
设每件衬衫的标价y元,依题意有
(360-50)y+50×0.8y≥(13200+28800)×(1+25%),
解得y≥150.
答:每件衬衫的标价至少是150元.
课堂总结


解分式方程的一般步骤




分析题意,找出研究对象,建立等量关系
选择恰当的未知数,注意单位
根据等量关系正确列出方程
认真仔细
有两次检验
不要忘记写答
(1)检验是否是所列方程的解
(2)检验是否满足实际意义
上21世纪教育网 下精品教学资源
板书设计
5.4.3 分式方程
1、利用分式方程解决实际问题

2、解分式方程的一般步骤

必做题:
课本P130练习第1、2题
跟踪练习册
选做题:
课本P130练习第3题
谢谢
21世纪教育网(www.21cnjy.com) 中小学教育资源网站
有大把高质量资料?一线教师?一线教研员?
欢迎加入21世纪教育网教师合作团队!!月薪过万不是梦!!
详情请看:
https://www.21cnjy.com/help/help_extract.php







中小学教育资源及组卷应用平台


5.4.3分式方程 导学案
课题 5.4.3分式方程 课型 新授课
学习目标 1.通过日常生活中的情境创设,经历探索分式方程应用的过程,会检验根的合理性; 2.经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过程。 3.通过创设贴近学生生活实际的现实情境,增强学生的应用意识。
重点难点 将实际问题中的等量关系,用分式方程表示并且求得结果。
感知探究 自自主学习 解分式方程的一般步骤?
自自学检测 甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x个零件,依题意列方程为______. 2.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意可列出方程______
合合作探究 探究一: 某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元, 所有房屋出租的租金第一年为9.6万元, 第二年为10.2万元.(1)你能找出这一情境中的等量关系吗?(2)根据这一情境你能提出哪些问题?(3)你能利用方程求出这两年每间房屋的租金各是多少吗?
探究二: 例3.某市从今年1月1日起调整居民用水价格,每立方米水费涨价.小丽家去年12月份的水费15元,而今年7月份的水费是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.
感知 1.审:分析题意,找出数量关系和相等关系. 2.设:选择恰当的未知数,注意单位和语言完整. 3.列:根据数量和相等关系,正确列出代数式和方程. 4.解:认真仔细. 5.验:有两次检验. 6.答:注意单位和语言完整.
四、 当堂检测 某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm管道,那么根据题意,可列方程______ . 2、甲、乙两个工程队共同完成一项工程,乙队先单独做5天,再由两队合作3天就完成全部工程,已知甲队与乙队单独完成这项工程所需时间之比是3:2,求甲乙两队单独完成此项工程各需多少天?若设甲、乙单独完成此项工程分别需3x天、2x天,则可列方程为______. 3、小明的妈妈上周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场搞酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,问她上周三买了几瓶? 某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元. (1)该商家购进的第一批衬衫是多少件? (2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元? 作业:必做题:课本P130练习第1、2题跟踪练习册选做题:课本P130练习第3题课堂小结:师生互动,本节课你学到了什么 参考答案:自学检测1解:设甲每小时做x个零件,则乙每小时做个零件,
依题意,得:.
故答案为:.
2解:设原计划平均每天生产x台机器,
根据题意得:,
故答案是:.合作探究 探究一: (1)你能找出这一情境中的等量关系吗?1、第二年出租房屋间数=第一年出租房屋间数 2、第二年房屋租金=第一年房屋租金+500元3、 出租房屋的总租金=每间房屋的租金×出租房屋间数 (2)根据这一情境你能提出哪些问题? 1、分别求两年每间出租房屋的租金 2、求出租房屋的总间数 (3)你能利用方程求出这两年每间房屋的租金各是多少吗? 设出租房屋x间. 则根据题意列方程得:解得:x=12. 经检验: x=12是原方程的解. 所以第一年租金为;96000÷12=8000
第二年租金为102000÷12=8500.答:每年租金分别为8000元和8500元. 探究二: 分析:此题的主要等量关系是:小丽家今年7月份的用水量-小丽家去年?12?月份的用水量=5m 3 .所以,首先要表示出小丽家这两个月的用水量,而用水量可以用水费除以水的单价得出. 当堂检测 123解:设上周三买了x瓶酸奶,则周三买的酸奶的单价为:,周日买的酸奶的单价为:.
所列方程为:,
解得:,不合题意舍去,
经检验得出,是原方程的根,
答:她上周三买了4瓶酸奶. 4解:设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有

解得,
经检验,是原方程的解,且符合题意.
答:该商家购进的第一批衬衫是120件.


设每件衬衫的标价y元,依题意有

解得.
答:每件衬衫的标价至少是150元.







21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)