人教版(2019)高中物理选修性必修第三册 第四章 原子结构和波粒二象性 (课件+教案) (共10份打包)

文档属性

名称 人教版(2019)高中物理选修性必修第三册 第四章 原子结构和波粒二象性 (课件+教案) (共10份打包)
格式 zip
文件大小 38.7MB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2020-05-24 15:46:00

文档简介

粒子的波动性和量子力学的建立
【教学目标】
一、知识与技能
1.知道德布罗意波的波长和粒子动量关系。
2.了解量子力学的建立过程。
二、过程与方法
1.了解物理学研究的基础是实验事实以及实验对于物理研究的重要性。
2.知道某一物质在不同环境下所表现的不同规律特性。
三、情感、态度与价值观
1.通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正。
2.通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度。
3.通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。
【教学重点】
实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。
【教学难点】
实物粒子的波动性的理解。
【教学过程】
一、复习提问、新课导入
我们已经知道:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。
光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。
而电子、质子等实物粒子是具有粒子性的,那么,实物粒子是否也会同时具有波动性呢?
二、新课教学
(一)粒子的波动性
法国科学家德布罗意考虑到普朗克能量子和爱因斯坦光子理论的成功,大胆地把光的波粒二象性推广到实物粒子。
他认为,“整个世纪以来(指19世纪)在光学中比起波动的研究方法来,如果说是过于忽视了粒子的研究方法的话,那么在实物的理论中,是否发生了相反的错误呢?是不是我们把粒子的图象想得太多,而过分忽略了波的图象呢?”
1.德布罗意波
实物粒子也具有波动性,这种波称之为物质波,也叫德布罗意波。
一个质量为m的实物粒子以速率v运动时,即具有以能量ε和动量p所描述的粒子性,同时也具有以频率v和波长l所描述的波动性。而且,。
后来,大量实验都证实了:质子、中子和原子、分子等实物微观粒子都具有波动性,并都满足德布罗意关系。
结论:一切实物粒子都具有波动性。
实物粒子的波粒二象性的意思是:微观粒子既表现出粒子的特性,又表现出波动的特性。
这种和实物粒子相联系的波称为德布罗意波(物质波或概率波),其波长称为德布罗意波长。
2.德布罗意波长
由光的波粒二象性的思想推广到微观粒子和任何运动着的物体上,得出物质波(德布罗意波)的概念:任何一个运动着的物体都有一种波与它相对应,该波的波长??=?/??。
例题1:试估算一个中学生在跑百米时的德布罗意波长。
解:一个中学生的质量大约为m≈50kg,百米跑时的速度约为v≈7m/s,由光子的动量表达式有:??=?/??=。
由计算结果看出,宏观物体的物质波波长非常小,所以很难表现出其波动性。
由于德布罗意博士论文独创性,得到了答辩委员会的高度评价,但是人们总觉得他的想法过于玄妙,无法接受。于是,有人质问:有什么可以验证这一新的观念?
如果你是德布罗意,将如何验证自己的观点?
(二)物质波的实验验证
1.电子衍射实验1
1927年,C.J.戴维森与雷斯特·革末做电子衍射实验,验证电子具有波动性。
戴维森和革末的实验是用电子束垂直投射到镍单晶,电子束被散射。其强度分布可用德布罗意关系和衍射理论给以解释,从而验证了物质波的存在。
2.电子衍射实验2
1927年,G.P.汤姆逊(J.J.汤姆逊之子)也独立完成了电子衍射实验。与C.J.戴维森共获1937年诺贝尔物理学奖。电子束在穿过细晶体粉末或薄金属片后,也像X射线一样产生衍射现象。
此后,人们相继证实了原子、分子、中子等都具有波动性。
3.电子双缝实验
1961年克劳斯·约恩松(Claus J?nsson)将一束电子加速到50keV,让其通过一缝宽为a=0.5×10-6m,间隔为d=2.0×10-6m的双缝,当电子撞击荧光屏时,发现了类似于双缝衍射实验结果。
4.物质波的应用
物质波的一个最重要的应用就是电子显微镜的发明。第一台电子显微镜是由德国鲁斯卡研制成功,荣获1986年诺贝尔物理奖。
从波动光学可知,由于显微镜的分辨本领与波长成反比,光学显微镜的最大分辨距离大于0.2μm,最大放大倍数也只有1000倍左右。
自从发现电子有波动性后,电子束德布罗意波长比光波波长短得多,而且极方便改变电子波的波长,这样就能制造出用电子波代替光波的电子显微镜。
教师展示电子显微镜下的照片。
(三)量子力学的建立
19、20世纪之交,人们在黑体辐射、光电效应、氢原子光谱等许多类问题中,都发现了经典物理学无法解释的现象。这些现象不是孤立的,而是在各类系统中普遍存在的,且都和原子、分子等微观粒子的行为紧密相关。在这些问题中经典物理学往往连实验结果的定性行为都无法解释。这就表明,微观世界的物理规律和宏观世界的物理定律可能存在巨大的差别,人们需要建立描述微观世界的物理理论。
德国物理家海森堡和玻恩等人对玻尔的氢原子理论进行了推广和改造,使之可以适用于更普遍的情况。他们建立的理论被称为矩阵力学。
1926年,奥地利物理学家薛定谔提出了物质波满足的方程——薛定谔方程,使玻尔理论的局限得以消除。由于这个理论的关键是物质波,因此被称为波动力学。
1926年,薛定谔和美国物理学家埃卡特很快又证明,波动力学和矩阵力学在数学上是等价的,它们是同一种理论的两种表达方式。
随后数年,在以玻恩、海森堡、薛定谔以及英国的狄拉克和奥地利的泡利为代表的众多物理学家的共同努力下,描述微观世界行为的理论被逐步完善并最终完整地建立起来,它被称为量子力学。
(四)量子力学的应用
量子力学被应用到众多具体物理系统中,得到了与实验符合得很好的结果,获得了极大的成功。
1.借助量子力学,人们深入认识了微观世界的组成、结构和属性。
2.量子力学推动了核物理和粒子物理的发展。
核物理的发展,还让人们成功地认识并利用了原子核反应堆所释放的能量——核能。爱因斯坦说:“这是人们第一次利用太阳以外的能量。”
3.量子力学推动了原子、分子物理和光学的发展。
激光、核磁共振、原子钟,等等。
4.量子力学推动了固体物理的发展。
利用半导体的独特性质发明了晶体管等各类固态电子器件,并结合激光光刻技术制造了大规模集成电路,俗称“芯片”。靠它们,人们才可以制造体积小且功能强大的电子计算机、智能手机等信息处理设备,真正走进了信息时代。此外,固体物理学的发展,还为人们带来了低能耗高亮度的半导体发光技术,并让人们认识了超导等一系列神奇的现象。
【练习巩固】
1.判一判
(1)德布罗意认为实数粒子也具有波动性。( √ )
(2)光的波粒二象性彻底推翻了麦克斯韦电磁理论。( × )
(3)波长较长的光只有波动性,没有粒子性。( × )
(4)向前飞行的子弹具有波动性。( √ )
2.下列说法中正确的( )
A.质量大的物体,其德布罗意波长短
B.速度大的物体,其德布罗意波长短
C.动量大的物体,其德布罗意波长短
D.动能大的物体,其德布罗意波长短
答案:C
3.根据物质波理论,以下说法中正确的是( )
A.微观粒子有波动性,宏观物体没有波动性
B.宏观物体和微观粒子都具有波动性
C.宏观物体的波动性不易被人观察到是因为它的波长太长
D.速度相同的质子和电子相比,电子的波动性更为明显
答案:BD
4.2002年诺贝尔物理学奖中的一项是奖励美国科学家贾科尼和日本科学家小柴昌俊发现了宇宙X射线源。X射线是一种高频电磁波,若X射线在真空中的波长为λ,以h表示普朗克常量,c表示真空中的光速,以E和p分别表示X射线每个光子的能量和动量,则( )
A.E=hλ/c,p=0 B.E=hλ/c,p=hλ/c2
C.E=hc/λ,p=0 D.E=hc/λ,p=h/λ
答案:D
5.如果一个中子和一个质量为10g的子弹都以103m/s的速度运动,则它们的德布罗意波的波长分别是多大?(中子的质量为1.67×10-27kg)
答案:4.0×10-10m 6.63×10-35m普朗克黑体辐射理论
【教学目标】
一、知识与技能
1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。
2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。
3.了解能量子的概念。
二、过程与方法
了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。
三、情感、态度与价值观
领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
【教学重点】
能量子的概念。
【教学难点】
黑体辐射的实验规律。
【教学过程】
一、复习提问、新课导入
教师:介绍能量量子化发现的背景:
19世纪末页,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的Maxwell方程。另外还找到了力、电、光、声等都遵循的规律——能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。
1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。”也就是说:物理学已经没有什么新东西了,后一辈只要把做过的实验再做一做,在实验数据的小数点后面在加几位罢了!
但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到:“但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云。”这两朵乌云是指什么呢?一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。
然而,事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路,柳暗花明又一村”。
点出课题:我们这节课就来学习普朗克黑体辐射理论。
二、新课教学
(一)黑体与黑体辐射
1.热辐射现象
固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。
所辐射电磁波的特征与温度有关。
例如:铁块 温度↑
从看不出发光到暗红到橙色到黄白色
从能量转化的角度来认识,是热能转化为电磁能的过程。
2.黑体
教师:除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。不同的物体吸收和反射电磁波的能力是不一样的。
概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。
不透明的材料制成带小孔的空腔,可近似看作黑体。如图所示。
教师注意强调:
(1)黑体是个理想化的模型。
(2)一般物体的辐射与温度、材料、表面状况有关,但黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。
3.黑体辐射:黑体虽然不反射电磁波,却可以向外辐射电磁波,这样的辐射叫作黑体辐射。
研究黑体辐射的规律是了解一般物体热辐射性质的基础。
(二)黑体辐射的实验规律
展示测量黑体辐射的实验原理图
加热空腔使其温度升高,空腔就成了不同温度下的黑体,从小孔向外的辐射就是黑体辐射。
1.辐射强度按波长分布与温度的关系
特点:随温度的升高
①各种波长的辐射强度都在增加;
②辐射强度的最大值向短波方向移动。
教师提出问题,设置疑问:怎样解释黑体辐射的实验规律呢?
在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。
2.经典物理学所遇到的困难
(1)维恩的经验公式:短波符合,长波不符合。
(2)瑞利-金斯公式:长波符合,短波荒唐。
3.超越牛顿的发现
1900年10月19日,普朗克在德国物理学会会议上提出黑体辐射公式。普朗克公式与实验结果非常吻合。
(三)能量子
普朗克最终在1900年底发现,如果想推导出这个公式,就必须假定:组成黑体的振动着的带电微粒的能量只能是某一最小能量值ε的整数倍。例如,可能是ε或2ε、3ε……他把这个不可再分的最小能量值ε叫作能量子,它的表达式为:ε=hν。
这里的ν是带电微粒的振动频率,也即带电微粒吸收或辐射电磁波的频率。h是一个常量,后人称之为普朗克常量,其值为h=6.62607015×10-34J·s。
【练习巩固】
1.下列叙述正确的是( )
A.一切物体都在辐射电磁波
B.一般物体辐射电磁波的情况只与温度有关
C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关
D.黑体能够完全吸收入射的各种波长的电磁波
答案:ACD
2.关于对黑体的认识,下列说法正确的是( )
A.黑体只吸收电磁波,不反射电磁波,看上去是黑的
B.黑体辐射电磁波的强度按波长的分布除与温度有关外,还与材料的种类及表面状况有关
C.黑体辐射电磁波的强度按波长的分布只与温度有关,与材料的种类及表面状况无关
D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面经多次反射和吸收,最终不能从小孔射出,这个空腔就成了一个黑体
答案:C
3.红、橙、黄、绿四种单色光中,光子能量最小的是( )
A.红光 B.橙光
C.黄光 D.绿光
答案:A
4.小灯泡的功率P=1W,设其发出的光向四周均匀辐射,平均波长λ=10-6m,求小灯泡每秒钟辐射的光子数是多少?(h=6.63×10-34J·s)
答案:5×1018个
5.下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是( )
答案:A
6.以下宏观概念中,哪些是“量子化”的( )
A.物体的带电荷量 B.物体的质量
C.物体的动量 D.学生的个数
答案:AD
7.黑体辐射的实验规律如图所示,由图可知( )
A.随温度升高,各种波长的辐射强度都增加
B.随温度降低,各种波长的辐射强度都增加
C.随温度升高,辐射强度的极大值向波长较短的方向移动
D.随温度降低,辐射强度的极大值向波长较长的方向移动
答案:ACD
8.在实验室或工厂的高温炉子上开一小孔,小孔可看作黑体,由小孔的热辐射特性,就可以确定炉内的温度。如图所示是黑体的辐射强度与其辐射光波长的关系图象,则下列说法正确的是( )
A.T1>T2
B.T1C.随着温度的升高,黑体的辐射强度都有所降低
D.随着温度的升高,辐射强度的极大值向波长较长方向移动
答案:A(共22张PPT)
光电效应
锌板在照射下失去电子而带正电
当光照射在金属表面时,金属中有电子逸出的现象,称为光电效应。
逸出的电子称为光电子。
一、光电效应的实验规律
一、光电效应的实验规律
当入射光频率减小到某一数值?c 时,A、K极板间不加反向电压,电流也为0。此时的光的频率?c即为截止频率!
1.截止频率
理解:
1.金属要发生光电效应与入射光强弱无关,只与频率有关。
2.入射光频率低于截止频率时,不光光照多强,金属都不会发生光电效应!
不同金属的截止频率不同。
截止频率与金属自身的性质有关。
一、光电效应的实验规律
光照不变,增大UAK,G表中电流达到某一值后不再增大,即达到饱和值。
2.饱和电流
理解:
频率不变,入射光越强,饱和电流越大,单位时间内发射的光电子数越多。
一、光电效应的实验规律
当K、A间加反向电压,光电子克服电场力作功,当电压达到某一值Uc时,光电流恰为0。Uc称截止电压。
3.截止电压
理解:
光电子克服电场力做功,到达A极板时速度刚好为零。
同一种金属,截止电压只与光的频率有关。
光电子的最大初动能只与入射光的频率有关,入射光的强弱无关。
一、光电效应的实验规律
即使入射光的强度非常微弱,只要入射光频率大于被照金属的极限频率,电流表指针也几乎是随着入射光照射就立即偏转。
4.光电效应具有瞬时性
更精确的研究推知,光电子发射所经过的时间不超过10-9秒(这个现象一般称作“光电子的瞬时发射”)。
一、光电效应的实验规律
1.对于任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能发生光电效应,低于这个频率就不能发生光电效应;
2.当入射光的频率大于极限频率时,入射光越强,饱和电流越大;
3.光电子的最大初动能与入射光的强度无关,只随着入射光的频率增大而增大;
4.入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9秒。
总结:
二、光电效应经典解释中的疑难
逸出功W0:使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功。
几种金属的截止频率和逸出功
二、光电效应经典解释中的疑难
光越强,逸出的电子数越多,光电流也就越大。
不管光的频率如何,只要光足够强,电子都可以获得足够能量从而逸出表面,不应存在截止频率。
光越强,光电子的初动能应该越大,所以截止电压Uc 应该与光的强弱有关。
如果光很弱,按经典电磁理论估算,电子需要几分钟到十几分钟的时间才能获得逸出表面所需的能量。

无法用经典的波动理论来解释光电效应。
逸出功W0:使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功。
三、爱因斯坦的光电效应理论
1.光子:
光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。这些能量子后来被称为光子。
2.爱因斯坦的光电效应方程

——光电子最大初动能
一个电子吸收一个光子的能量hν后,一部分能量用来克服金属的逸出功W0,剩下的表现为逸出后电子的初动能Ek,即:
——金属的逸出功
三、爱因斯坦的光电效应理论
4.光电效应理论的验证
美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦方程,的值与理论值完全一致,又一次证明了“光量子”理论的正确。
由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。
四、康普顿效应和光子的动量
1.光的散射
光束通过某些介质时,可以看到光的散射现象。
2.康普顿效应
1923年康普顿在做X射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。这种波长改变的散射称为康普顿效应。
经典理论无法解释康普顿效应。
经典理论认为:物质中的电子会随入射光以相同的频率振动,并向外辐射,即散射光的频率与入射光频率相等。而无法解释有Δλ存在的实验规律。

X-ray

四、康普顿效应和光子的动量
3.康普顿效应的光量子理论解释
(1)若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。
(2)若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。
(3)因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。
四、康普顿效应和光子的动量
4.康普顿散射实验的意义
(1)有力地支持了爱因斯坦“光量子”假设。
(2)首次在实验上证实了“光子具有动量”的假设。
(3)证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。
康普顿的成功也不是一帆风顺的,在他早期的几篇论文中,一直认为散射光频率的改变是由于“混进来了某种荧光辐射”;在计算中起先只考虑能量守恒,后来才认识到还要用动量守恒。
康普顿于1927年获诺贝尔物理奖。
五、光的波粒二象性
光具有波动性,又有粒子性,即波粒二象性。
光在传播过程中表现出波动性,如干涉、衍射、偏振现象。
光在与物质发生作用时表现出粒子性,如光电效应,康普顿效应。
光子能量:
光子动量:
关于光的本性问题,我们不应该在微粒说和波动说之间进行取舍,而应该把它们看作是光的本性的两种不同侧面的描述。
粒子性
波动性
1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图所示,这时( )
A.锌板带正电,指针带负电
B.锌板带正电,指针带正电
C.锌板带负电,指针带正电
D.锌板带负电,指针带负电
B
2.一束黄光照射某金属表面时,不能产生光电效应,则下列措施中可能使该金属产生光电效应的是( )
A.延长光照时间
B.增大光束的强度
C.换用红光照射
D.换用紫光照射
D
3.关于光子说的基本内容有以下几点,不正确的是( )
A.在空间传播的光是不连续的,而是一份一份的,每一份叫一个光子
B.光是具有质量、能量和体积的物质微粒子
C.光子的能量跟它的频率成正比
D.光子客观并不存在,而是人为假设的
B
4.能引起人的视觉感应的最小能量为10-18J,已知可见光的平均波长约为0.6m,则进入人眼的光子数至少为 个,恰能引起人眼的感觉。
3
5.关于光电效应下述说法中正确的是( )
A.光电子的最大初动能随着入射光的强度增大而增大
B.只要入射光的强度足够强,照射时间足够长,就一定能产生光电效应
C.在光电效应中,饱和光电流的大小与入射光的频率无关
D.任何一种金属都有一个极限频率,低于这个频率的光不能发生光电效应
D氢原子光谱和玻尔的原子模型
【教学目标】
1.了解光谱的定义和分类。
2.了解氢原子光谱的实验规律,知道巴耳末系。
3.了解经典原子理论的困难。
4.了解玻尔原子理论的主要内容。
5.了解能级、能量量子化以及基态、激发态的概念。
【教学重点】
1.氢原子光谱的实验规律。
2.玻尔原子理论的基本假设。
【教学难点】
1.经典理论的困难。
2.玻尔理论对氢光谱的解释。
【教学过程】
一、光谱
早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。(如图所示)
光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。有时只是波长成分的记录。
(1)发射光谱
物体发光直接产生的光谱叫做发射光谱。
发射光谱可分为两类:连续光谱和明线光谱。
问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫谱线,各条谱线对应不同波长的光。)
炽热的固体、液体和高压气体的发射光谱是连续光谱。例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。如图所示。
稀薄气体或金属的蒸汽的发射光谱是明线光谱。明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。如图所示。
(2)吸收光谱
高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应。这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。因此吸收光谱中的暗谱线,也是原子的特征谱线。太阳的光谱是吸收光谱。如图所示。
既然每种原子都有自己的特征谱线,我们就可以利用它来鉴别物质和确定物质的组成成分。这种方法称为光谱分析。
它的优点是灵敏度高,样本中一种元素的含量达到10-13kg时就可以被检测到。
二、氢原子光谱的实验规律
许多情况下光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的一条重要途径。
展示实验装置:
简单讲解实验原理和实验方法,最后展示实验结果:
氢原子是最简单的原子,其光谱也最简单。
瑞士科学家巴耳末对当时已知的氢原子在可见光区的四条谱线作了分析,发现这些谱线的波长λ满足一个简单的公式,即巴耳末公式:
里德伯常量
n有两层含义,一是n取一个值,可求出氢光谱中一条谱线的波长说明每一个n值分别对应一条谱线,二是n值只能取正整数值3,4,5,…
三、经典理论的困难
按经典理论电子绕核旋转,作加速运动,电子将不断向四周辐射电磁波,它的能量不断减小,从而将逐渐靠近原子核,最后落入原子核中。轨道及转动频率不断变化,辐射电磁波频率也是连续的,原子光谱应是连续的光谱。实验表明原子相当稳定,这一结论与实验不符。实验测得原子光谱是不连续的谱线。
矛盾一:无法解释原子的稳定性。
矛盾二:无法解释原子光谱的分立性。
四、玻尔原子理论的基本假设
为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。
1.玻尔的原子结构假说
(1)定态(能级)假设:
原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)
基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。
激发态:原子处于较高能级时,电子在离核较远的轨道上运动,这种定态,叫激发态。
(2)跃迁假设:
原子从一种定态(设能量为En)跃迁到另一种定态(设能量为Em)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即(h为普朗克恒量)
(3)轨道量子化假设:
原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充。)
五、玻尔理论对氢光谱的解释
1.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:
轨道半径:rn=n2r1 (n=1,2,3,…)
能量:En=E1/n2 (n=1,2,3,…)
式中r1、E1分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,rn、En分别代表第n条可能轨道的半径和电子在第n条轨道上运动时的能量,n是正整数,叫量子数。
2.氢原子的能级图
从玻尔的基本假设出发,运用经典电磁学和经典力学的理论,可以计算氢原子中电子的可能轨道半径和相应的能量。
(1)氢原子的大小:氢原子的电子的各条可能轨道的半径rn=n2r1,r1代表第一条(离核最近的一条)可能轨道的半径r1=0.53×10-10m。
例:n=2,r2=2.12×10-10m
(2)氢原子的能级:①原子在各个定态时的能量值En称为原子的能级。它对应电子在各条可能轨道上运动时的能量En(包括动能和势能),En=E1/n2(n=1,2,3,…)E1代表电子在第一条可能轨道上运动时的能量E1=-13.6eV。
注意:计算能量时,取离核无限远处的电势能为零,电子带负电,在正电荷的场中为负值,电子的动能为电势能绝对值的一半,总能量为负值。
例:n=2,E2=-3.4eV,n=3,E3=-1.51eV,n=4,E4=-0.85eV,……
氢原子的能级图如图所示。
3.原子发光:原子从基态向激发态跃迁的过程是吸收能量的过程。原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。
说明:氢原子中只有一个核外电子,这个电子在某个时刻只能在某个可能轨道上,或者说在某个时间内,由某轨道跃迁到另一轨道——可能情况只有一种。可是,通常容器盛有的氢气,总是千千万万个原子在一起,这些原子核外电子跃迁时,就会有各种情况出现了。但是这些跃迁不外乎是能级图中表示出来的那些情况。
六、玻尔理论的局限性
玻尔理论虽然把量子理论引入原子领域,提出定态和跃迁概念,成功解释了氢原子光谱,但对多电子原子光谱无法解释,因为玻尔理论仍然以经典理论为基础。如粒子的观念和轨道。
实际上,根据量子力学,原子中电子的坐标没有确定的值。因此,我们只能说某时刻电子在某点附近单位体积内出现的概率是多少,而不能把电子的运动看成一个具有确定坐标的质点的轨道运动。当原子处于不同的状态时,电子在各处出现的概率是不一样的。如果用疏密不同的点子表示电子在各个位置出现的概率,画出图来就像云雾一样,人们形象地把它叫作电子云。
【练习巩固】
1.按照波尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道上,有关能量变化的说法中,正确的是( )
A.电子的动能变大,电势能变大,总能量变大
B.电子的动能变小,电势能变小,总能量变小
C.电子的动能变小,电势能变大,总能量不变
D.电子的动能变小,电势能变大,总能量变大
答案:D
2.根据玻尔理论,某原子的电子从能量为E的轨道跃迁到能量为E?的轨道,辐射出波长为λ的光,以h表示普朗克常量,c表示真空中的光速,则E?等于( )
A.???h??/?? B.??+h??/??
C.???h??/?? D.??+h??/??
答案:C
3.欲使处于基态的氢原子被激发,下列可行的措施是( )
A.用10.2eV的光子照射
B.用11eV的光子照射
C.用14eV的光子照射
D.用11eV的电子碰撞
答案:ACD
4.一群处于基态的氢原子吸收某种单色光的光子后,只能发出频率为ν1、ν2、ν3的三种光子,且ν1>ν2>ν3,则( )
A.被氢原子吸收的光子的能量为hν1
B.被氢原子吸收的光子的能量为hν2
C.ν1=ν2+ν3
D.被氢原子吸收的光子的能量为hν1+hν2+hν3
答案:AC(共20张PPT)
普朗克黑体辐射理论
1900年,在英国皇家学会的新年庆祝会上,物理学家威廉·汤姆孙勋爵作了展望新世纪的发言:
科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了
黑体辐射实验
光速
“但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云”
2. 辐射的原因:物体中每个分子、原子或离子都在各自平衡位置附近以各种不同频率做无规则的微振动,每个带电微粒的振动都会产生变化的电磁场,从而向外辐射各种波长的电磁波,形成的电磁波谱。
3. 特性:室温时,主要成分是波长较长的电磁波;当温度升高时,波长较短的电磁波成分越来越强。
辐射强度及波长成分的分布随温度变化
1. 一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
800
K
1000
K
1200
K
1400
K
一、黑体与黑体辐射
1.黑体:如果一个物体能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体就是绝对黑体,简称黑体。
注意:(1)黑体是个理想化的模型。
(2)一般物体的辐射与温度、材料、表面状况有关,但黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。
2.黑体辐射:黑体虽然不反射电磁波,却可以向外辐射电磁波,这样的辐射叫作黑体辐射。
二、黑体辐射的实验规律
1.测量黑体辐射的实验原理图
加热空腔使其温度升高,空腔就成了不同温度下的黑体,从小孔向外的辐射就是黑体辐射。






平行光管


三棱镜
T

空腔
二、黑体辐射的实验规律
2.辐射强度按波长分布与温度的关系
特点:随温度的升高
①各种波长的辐射强度都在增加;
②辐射强度的最大值向短波方向移动。





二、黑体辐射的实验规律
3.经典物理学所遇到的困难
(1)维恩的经验公式:
短波符合,长波不符合
(2)瑞利 ─ 金斯公式:
长波符合,短波荒唐
瑞利 ─ 金斯线
维恩线





瑞利 ─ 金斯线
维恩线
黑体辐射公式:
1900年10月19日,普朗克在德国物理学会会议上提出黑体辐射公式。
二、黑体辐射的实验规律
4.超越牛顿的发现
三、能量子
普朗克能量子假说
1. 振动的带电微粒,它们的能量是某一最小能量的整数倍:

2. 叫能量子,简称量子, 为量子数,它只取正整数 — 能量量子化。
3. 带电微粒辐射或吸收能量时,只能是以这个最小能量为单位一份一份的。
4. 最小能量为:
5. 宏观能量:连续的
微观能量:不连续、分立、量子化的。
— 普朗克常量
三、能量子
普朗克
牛顿以来物理学最伟大的发现之一
跨出了真正说明物质世界量子性的第一步
三、能量子
普朗克
牛顿以来物理学最伟大的发现之一
Planck 抛弃了经典物理中的能量可连续变化、物体辐射或吸收的能量可以为任意值的旧观点,提出了能量子、物体辐射或吸收能量只能一份一份地按不连续的方式进行的新观点。这不仅成功地解决了热辐射中的难题,而且开创物理学研究新局面,标志着人类对自然规律的认识已经从从宏观领域进入微观领域,为量子力学的诞生奠定了基础。1918年他荣获诺贝尔物理学奖。
死后他的墓碑上只刻着他的姓名和
h = 6.626?10 ─34 J·s
1.下列叙述正确的是( )
A.一切物体都在辐射电磁波
B.一般物体辐射电磁波的情况只与温度有关
C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关
D.黑体能够完全吸收入射的各种波长的电磁波
ACD
2.关于对黑体的认识,下列说法正确的是( )
A.黑体只吸收电磁波,不反射电磁波,看上去是黑的
B.黑体辐射电磁波的强度按波长的分布除与温度有关外,还与材料的种类及表面状况有关
C.黑体辐射电磁波的强度按波长的分布只与温度有关,与材料的种类及表面状况无关
D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面经多次反射和吸收,最终不能从小孔射出,这个空腔就成了一个黑体
C
3.红、橙、黄、绿四种单色光中,光子能量最小的是( )
A.红光 B.橙光
C.黄光 D.绿光
A
4.小灯泡的功率P=1W,设其发出的光向四周均匀辐射,平均波长λ=10-6m,求小灯泡每秒钟辐射的光子数是多少?(h=6.63×10-34J·s)
5×1018个
5.下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是( )
A
6.以下宏观概念中,哪些是“量子化”的( )
A.物体的带电荷量 B.物体的质量
C.物体的动量 D.学生的个数
AD
7.黑体辐射的实验规律如图所示,由图可知( )
A.随温度升高,各种波长的辐射强度都增加
B.随温度降低,各种波长的辐射强度都增加
C.随温度升高,辐射强度的极大值向波长较短的方向移动
D.随温度降低,辐射强度的极大值向波长较长的方向移动
ACD
8.在实验室或工厂的高温炉子上开一小孔,小孔可看作黑体,由小孔的热辐射特性,就可以确定炉内的温度。如图所示是黑体的辐射强度与其辐射光波长的关系图象,则下列说法正确的是( )
A.T1>T2
B.T1C.随着温度的升高,黑体的辐射强度都有所降低
D.随着温度的升高,辐射强度的极大值向波长较长方向移动
A光电效应
【教学目标】
一、知识与技能
1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量。
4.了解光既具有波动性,又具有粒子性。
二、过程与方法
经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
三、情感、态度与价值观
领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
【教学重点】
光电效应的实验规律。
【教学难点】
爱因斯坦光电效应方程以及意义。
【教学过程】
一、复习提问、新课导入
回顾前面的学习,总结人类对光的本性的认识的发展过程。
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
二、新课教学
(一)光电效应的实验规律
1.光电效应
实验演示1:用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。上述实验说明了什么?(表明锌板在射线照射下失去电子而带正电。)
概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子。
2.光电效应的实验规律
以上实验改用很强的白炽灯照射,却不能发生光电效应。向学生提出问题:光电效应的发生一定是有条件的,存在着一定规律。有什么规律呢?让我们进一步研究。
向学生介绍光电效应演示仪。在黑板上画一示意图,如图所示。S为抽成真空的光电管,C是石英窗口,光线可通过它照射到金属板K上,金属板A和K组成一对电极与外部电路相连接。光源为白炽灯,在光源和石英窗口C之间插入不同颜色的滤光片可以改变入射光的频率,光源的亮度可以通过另一套装置调节。
实验演示2:光电效应的规律
观察现象一:存在截止频率
当入射光频率减小到某一数值c时,A、K极板间不加反向电压,电流也为0。
c称为截止频率或极限频率。这就是说,当入射光的频率低于截止频率时不发生光电效应。
实验表明,不同金属的截止频率不同。换句话说,截止频率与金属自身的性质有关。
观察现象二:存在饱和电流
光照不变,增大UAK,G表中电流达到某一值后不再增大,即达到饱和值。
出示图象
理解:
频率不变,入射光越强,饱和电流越大,单位时间内发射的光电子数越多。
观察现象三:存在截止电压
如果施加反向电压,也就是阴极接电源正极、阳极接电源负极,在光电管两极间形成使电子减速的电场,电流有可能为0。使光电流减小到0的反向电压Uc称为截止电压。
,可以理解为:光电子克服电场力做功,到达A极板时速度刚好为零。
同一种金属,截止电压只与光的频率有关。
光电子的最大初动能只与入射光的频率有关,入射光的强弱无关。
观察现象四:光电效应具有瞬时性
即使入射光的强度非常微弱,只要入射光频率大于被照金属的极限频率,电流表指针也几乎是随着入射光照射就立即偏转。
更精确的研究推知,光电子发射所经过的时间不超过10-9秒(这个现象一般称作“光电子的瞬时发射”)。
对以上现象进行总结:
1.对于任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能发生光电效应,低于这个频率就不能发生光电效应;
2.当入射光的频率大于极限频率时,入射光越强,饱和电流越大;
3.光电子的最大初动能与入射光的强度无关,只随着入射光的频率增大而增大;
4.入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9秒。
(二)光电效应经典解释中的疑难
逸出功W0:使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功。
按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。
光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。
光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。
一切都表明:无法用经典的波动理论来解释光电效应。
为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。
(三)爱因斯坦的光电效应理论
1.内容
光不仅在发射和吸收时以能量为hν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν的光是由大量能量为E=hν的光子组成的粒子流,这些光子沿光的传播方向以光速c运动。
2.爱因斯坦光电效应方程
在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W0,另一部分变为光电子逸出后的动能Ek。由能量守恒可得出:hν=Ek+W0。
W0为电子逸出金属表面所需做的功,称为逸出功。Wk为光电子的最大初动能。
3.爱因斯坦对光电效应的解释
①光强大,光子数多,释放的光电子也多,所以光电流也大。
②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。
③从方程可以看出光电子初动能和照射光的频率成线性关系。
④从光电效应方程中,当初动能为零时,可得极限频率:νc=W0/h。
爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。
4.光电效应理论的验证
美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦方程,?的值与理论值完全一致,又一次证明了“光量子”理论的正确。
由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。
密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。
(四)康普顿效应和光子的动量
1.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。
2.康普顿效应
1923年康普顿在做X射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。这种波长改变的散射称为康普顿效应。
经典理论认为:物质中的电子会随入射光以相同的频率振动,并向外辐射,即散射光的频率与入射光频率相等。而无法解释有Δλ存在的实验规律。
3.康普顿效应的光量子理论解释
(1)若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。
(2)若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。
(3)因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。
4.康普顿散射实验的意义
(1)有力地支持了爱因斯坦“光量子”假设。
(2)首次在实验上证实了“光子具有动量”的假设。
(3)证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。
康普顿的成功也不是一帆风顺的,在他早期的几篇论文中,一直认为散射光频率的改变是由于“混进来了某种荧光辐射”;在计算中起先只考虑能量守恒,后来才认识到还要用动量守恒。康普顿于1927年获诺贝尔物理奖。
(五)光的波粒二象性
我们知道光在传播过程中表现出波动性,如干涉、衍射、偏振现象。
而今天我们学习了光在与物质发生作用时表现出粒子性,如光电效应,康普顿效应。
说明光具有波动性,又有粒子性,即波粒二象性。关于光的本性问题,我们不应该在微粒说和波动说之间进行取舍,而应该把它们看作是光的本性的两种不同侧面的描述。
【练习巩固】
1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图所示,这时( )
A.锌板带正电,指针带负电
B.锌板带正电,指针带正电
C.锌板带负电,指针带正电
D.锌板带负电,指针带负电
答案:B
2.一束黄光照射某金属表面时,不能产生光电效应,则下列措施中可能使该金属产生光电效应的是( )
A.延长光照时间
B.增大光束的强度
C.换用红光照射
D.换用紫光照射
答案:D
3.关于光子说的基本内容有以下几点,不正确的是( )
A.在空间传播的光是不连续的,而是一份一份的,每一份叫一个光子
B.光是具有质量、能量和体积的物质微粒子
C.光子的能量跟它的频率成正比
D.光子客观并不存在,而是人为假设的
答案:B
4.能引起人的视觉感应的最小能量为10-18J,已知可见光的平均波长约为0.6μm,则进入人眼的光子数至少为________个,恰能引起人眼的感觉。
答案:3
5.关于光电效应下述说法中正确的是( )
A.光电子的最大初动能随着入射光的强度增大而增大
B.只要入射光的强度足够强,照射时间足够长,就一定能产生光电效应
C.在光电效应中,饱和光电流的大小与入射光的频率无关
D.任何一种金属都有一个极限频率,低于这个频率的光不能发生光电效应
答案:D原子的核式结构模型
【教学目标】
一、知识与技能
1.了解阴极射线及电子发现的过程。
2.了解原子结构模型建立的历史过程及各种模型建立的依据。
3.知道??粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。
二、过程与方法
1.通过对??粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力。
2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。
3.了解研究微观现象的方法。
三、情感、态度与价值观
1.理解人类对原子的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程,根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说。人类就是这样通过光的行为,经过分析和研究,逐渐认识原子的。
2.通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神。
3.通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。
【教学重点】
1.电子的发现。
2.原子的核式结构模型。
【教学难点】
??粒子散射实验。
【教学过程】
一、新课导入
很早以来,人们一直认为构成物质的最小粒子是原子。科学家在研究稀薄气体放电时发现,当玻璃管内的气体足够稀薄时,阴极就发出一种射线。它能使对着阴极的玻璃管壁发出荧光。
实验演示:观察阴极射线管
1876年,德国物理学家戈德斯坦认为管壁上的荧光是由于玻璃受到的阴极发出的某种射线的撞击而引起的,并把这种未知射线称之为阴极射线。
那么,阴极射线的本质是什么?
二、新课教学
(一)电子的发现
对于阴极射线的本质,有大量的科学家作了大量的科学研究,主要形成了两种观点。
(1)电磁波说:
代表人物:赫兹。认为这种射线的本质是一种电磁波的传播过程。
(2)粒子说:
代表人物:汤姆孙。认为这种射线的本质是一种高速粒子流。
思考:你能否设计一个实验来进行阴极射线的研究,能通过实验现象来说明这种射线是一种电磁波还是一种高速粒子流。
如果出现什么样的现象就可以认为这是一种电磁波,如果出现其他什么样的现象就可以认为这是一种高速粒子流,能否测定这是一种什么粒子。
1.汤姆孙的研究
英国物理学家汤姆孙在研究阴极射线时发现了电子。实验装置如图所示,从高压电场的阴极发出的阴极射线,穿过D1D2后沿直线打在荧光屏P上。
思考:
(1)实验目的是什么?
(2)判断阴极射线是否是带电粒子流的基本方法是什么?
(3)测阴极射线比荷的基本思路是怎样的?
(4)哪些量可以当作已知量处理?
教师解答:
(1)实验目的:
①判断阴极射线是否带电。
②如果阴极射线带电,则测出其比荷。
(2)判断阴极射线是否是带电粒子流的基本方法是什么?
让带电粒子通过电场或磁场,观察它是否偏转。
如果偏转则带电,否则不带电。
(3)测阴极射线比荷的基本思路是怎样的?
①先加电场使阴极射线偏转。
②再加磁场,调整电场磁场的强度,使阴极射线不偏转。
③每个阴极射线微粒受到的库仑力等于洛伦兹力,求出阴极射线的速度。
④只保留磁场,阴极射线只受洛伦兹力,做匀速圆周运动,再求比荷。
(4)哪些量可以当作已知量处理?
场强E,磁感应强度B,圆周运动的半径r。
教师:施加电场E之后,射线发生偏转并射到屏上P2处。由此可以推断阴极射线带有什么性质的电荷?怎么判断的?
学生:带负电,因为场强E的方向竖直向上,而射线向下偏,说明电场力F的方向竖直向下,所以射线带负电。
教师:再加磁场抵消阴极射线的偏转,使它从P2点回到P1,需要在两块金属板之间的区域再施加一个大小、方向合适的磁场。
这个磁场的方向是?根据什么判断?
学生:垂直于黑板面向外,用左手定则判断。
教师:怎么得到不偏转的时候电子的速度?
学生:设粒子质量为m,带电荷为e,受到磁场力和电场力的作用,如果不发生偏转,则受力平衡:

,得:
教师:如果偏转P3,我们可以得到什么?
去掉D1、D2间的电场E,只保留磁场B,阴极射线在有磁场的区域将会形成一个半径为r的圆弧(r可以通过P3的位置算出)。
得:
2.实验结论:阴极射线是带负电的粒子流。还可求出这种粒子的比荷。
汤姆孙还发现用不同材料的阴极做实验,比荷数值都相同。
说明:不同物质都能发射这种带电粒子,它是构成各种物质的共有成分。
汤姆孙还由实验测得的阴极射线的比荷是氢离子的比荷近2000倍。后来,汤姆孙直接测到了阴极射线粒子的电荷量,尽管当时测量很不准确,但足以证明这种粒子的电荷量与氢离子大致相同,质量比氢离子小得多。
发现电子以后,汤姆孙进一步研究又发现了许多新现象:
金属受热→热离子流
紫外线照射→光电流
放射性物质→β射线
汤姆孙后续的实验粗略测出了这种粒子的电荷量确实与氢离子的电荷量差别不大,证明了汤姆孙的猜测是正确的。汤姆生把新发现的这种粒子称之为电子。
第一次较为精确测量出电子电荷量的是美国物理学家密立根利用油滴实验测量出的。密立根通过实验还发现,电荷具有量子化的特征。即任何电荷只能是e的整数倍。
电子的电荷量:e=1.60217733×10-19C
电子的质量:m=9.1093897×10-31kg
(二)原子的核式结构模型
1.汤姆孙的原子模型在J.J.汤姆孙发现电子之后,对于原子中正负电荷如何分布的问题,科学家们提出了许多模型。J.J.汤姆孙本人于1898年提出了一种模型。他认为,原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中。有人形象地把他的这个模型称为“西瓜模型”或“枣糕模型”。这个模型能够解释一些实验现象。但德国物理学家勒纳德1903年做了一个实验,使电子束射到金属膜上,发现较高速度的电子很容易穿透原子。这说明原子不是一个实心球体,这个模型可能不正确。之后不久,??粒子散射实验则完全否定了这个模型。
2.??粒子散射实验
根据汤姆生模型猜想的结果:
电子质量很小,对??粒子的运动方向不会发生明显影响;由于正电荷均匀分布,??粒子所受库仑力也很小,故??粒子偏转角度不会很大。
教师演示实验,根据演示的实验描述实验现象:
(1)绝大多数??粒子穿过金箔后仍沿原来方向前进;
(2)少数??粒子(约占8000分之一)发生了较大的偏转;
(3)极少数??粒子的偏转超过了90°,有的甚至几乎被撞了回来。
这个现象让卢瑟福很是震惊,在晚年曾说过:这是我一生中最不可思议的事件,就像你对着一张纸发射一枚炮弹,却被反射回来的炮弹击中一样的不可思议!
采访学生:此刻的你有什么感想?
老师总结:这个结果固然让我们震惊,很是激动,但是我觉得在这个过程中科学家们的锲而不舍、严谨务实的科学态度,更让我们敬畏。
这个实验是物理学史上十大最美实验之一(伽利略的自由落体、卡文迪许的扭秤实验、密里根的油滴实验,其他的大家不熟悉,有兴趣的可以查资料了解)。
实验结果与之前预测完全不一致!
思考:既然电子影响不大,那只能是正电荷,均匀分布又不行。那你认为原子中的正电荷应如何分布,才有可能造成??粒子的大角度偏转?以及如何用你新的模型解释三条现象?
学生讨论
引导:不是电子,必为正电物质,但又不时均匀分布,那么质量和电荷量只能集中在很小的空间内。
点评:卢瑟福也是这么想的!英雄所见略同!
总结原子特点:绝大部分是空的,正电体占原子质量绝大部分而只占据很小的空间范围。
老师:此时的卢瑟福既激动,又矛盾:难道汤姆孙的模型是错误的吗?可是这是他的恩师,也是当时物理学界的权威啊!如果是你,你会怎么做?(有前途,下一个卢瑟福)
老师:最后他花了一两年的时间,做了大量的实验和理论计算后深思熟虑,决定尊重事实,不畏权威,大胆的推翻了汤姆孙的模型,提出了核式结构模型。
3.原子的核式结构模型
(1)在原子的中心有一个很小的核,叫做原子核。
(2)原子的全部正电荷和几乎全部质量都集中在原子核里。
(3)带负电的电子在核外空间绕着核旋转。
卢瑟福提出的原子模型中,带正电的原子核像太阳,带负电的电子像绕着太阳转的行星。因而这个模型又被称为“行星模型”。而这个唯美的图片也已经广泛出现在科普读物上,称为科学的标志。
再次验证:卢瑟福以这个模型为依据,利用经典力学计算了各个方向粒子的比例,结果与实验数据符合的很好。
这里大家会发现一个很有趣的现象:刚开始我们公认的牛人:电子之父有着重要的贡献,但是今天所有的教科书都要批评他的西瓜模型。这也告诉我们:曾经正确的科学家也会犯错误,矛盾的出现预示着新的理论的形成,也只有新的理论可以解决矛盾。科学就是这样螺旋式前进着,一步步地走向真理。
(三)原子核的电荷与尺度
1.原子核的带电量
思考:原子核带多少正电荷?
回答:原子核的电荷数=电子数=原子序数=质子数
2.原子核的尺度
原子半径的数量级多大?原子核半径的数量级多大?
回答:原子半径的数量级为10-10m、原子核半径数量级为10-15m,两者相差105倍!
举例:假设我们的教室就是一个原子,半径大约10米,大家找找原子核相当于教室里的什么呢?
原子核的半径大约只有0.1毫米!
相当于教室里的一个灰尘。
【练习巩固】
1.电子的发现说明( )
A.原子是由原子核和电子组成的
B.物质是带电的且一定带负电
C.原子可进行再分
D.原子核可再分
答案:C
2.关于阴极射线,下列说法正确的是( )
A.阴极射线就是稀薄气体导电的辉光放电现象
B.阴极射线是在真空管内由阴极发出的电子流
C.阴极射线是某一频率的电磁波
D.阴极射线可以直线传播,也可被电场、磁场偏转
答案:BD
3.一只阴极射线管,左侧不断有电子射出,若在管的正下方,放一通电直导线AB时,发现射线径迹向下偏,则( )
A.导线中的电流由A流向B
B.导线中的电流由B流向A
C.若要使电子束的径迹往上偏,可以通过改变AB中的电流方向来实现
D.电子束的径迹与AB中的电流方向无关
答案:BC
4.有一电子(电荷量为e)经电压为U0的电场加速后,进入两块间距为d,电压为U的平行金属板间,若电子从两板正中间垂直电场方向射入,且正好能穿过电场,求:
(1)金属板AB的长度;
(2)电子穿出电场时的动能。
答案:(1)
(2)
5.提出原子核式结构模型的科学家是( )
A.汤姆孙 B.法拉第
C.卢瑟福 D.奥斯特
答案:C
6.在用α粒子轰击金箔的实验中,卢瑟福观察到的α粒子的运动情况是( )
A.全部α粒子穿过金属箔后,仍按原来的方向前进
B.绝大多数α粒子穿过金属箔后,仍按原来的方向前进,少数发生较大偏转,极少数甚至被弹回
C.少数α粒子穿过金属箔后,仍按原来的方向前进,绝大多数发生较大偏转,甚至被弹回
D.全部α粒子都发生很大偏转
答案:B
7.卢瑟福α粒子散射实验的结果( )
A.证明了质子的存在
B.证明了原子核是由质子和中子组成的
C.说明原子的全部正电荷和几乎全部质量都集中在一个很小的核上
D.说明原子的电子只能在某些不连续的轨道上运动
答案:C
8.在α粒子散射实验中,没有考虑α粒子跟电子的碰撞,其原因是( )
A.α粒子不跟电子发生相互作用
B.α粒子跟电子相碰时,损失的能量极少,可忽略
C.电子的体积很小,α粒子不会跟电子相碰
D.由于电子是均匀分布的,α粒子所受电子作用的合力为零
答案:B
9.卢瑟福原子核式结构理论的主要内容有( )
A.原子的中心有个核,叫做原子核
B.原子的正负电荷都均匀分布在整个原子中
C.原子的全部正电荷和几乎全部质量都集中在原子核里
D.带负电的电子在核外绕核旋转
答案:ACD
10.在卢瑟福的α粒子散射实验中,有少数α粒子发生大角度偏转,其原因是( )
A.原子的正电荷和绝大部分质量集中在一个很小的核上
B.正电荷在原子中是均匀分布的
C.原子中存在着带负电的电子
D.原子只能处于一系列不连续的能量状态中
答案:A(共25张PPT)
粒子的波动性和
量子力学的建立
光的波粒二象性
光具有波动性,又有粒子性,即波粒二象性。
光在传播过程中表现出波动性,如干涉、衍射、偏振现象。
光在与物质发生作用时表现出粒子性,如光电效应,康普顿效应。
光子能量:
粒子性
波动性
光子动量:
一、粒子的波动性
他认为,“整个世纪以来(指19世纪)在光学中比起波动的研究方法来,如果说是过于忽视了粒子的研究方法的话,那么在实物的理论中,是否发生了相反的错误呢?是不是我们把粒子的图象想得太多,而过分忽略了波的图象呢?”
德布罗(De·Broglie),法国物理学家,1929年诺贝尔物理学奖获得者,波动力学的创始人,量子力学的奠基人之一。1923年发表了题为“波和粒子”的论文,提出了物质波的概念。
一、粒子的波动性
一个质量为m的实物粒子以速率?运动时,即具有以能量ε和动量 p所描述的粒子性,同时也具有以频率v和波长l所描述的波动性。
  后来,大量实验都证实了:质子、中子和原子、分子等实物微观粒子都具有波动性,并都满足德布罗意关系。
一切实物粒子都具有波动性
德布罗意关系
一、粒子的波动性
实物粒子的波粒二象性的意思是:微观粒子既表现出粒子的特性,又表现出波动的特性。
这种和实物粒子相联系的波称为德布罗意波(物质波或概率波),其波长?称为德布罗意波长。
由光的波粒二象性的思想推广到微观粒子和任何运动着的物体上,得出物质波(德布罗意波)的概念:任何一个运动着的物体都有一种波与它相对应,该波的波长。
例题1:试估算一个中学生在跑百米时的德布罗意波长。
解:一个中学生的质量大约为m≈ 50 kg,百米跑时的速度约为?≈7m/s,由光子的动量表达式有:
由计算结果看出,宏观物体的物质波波长非常小,所以很难表现出其波动性。
例题2:电子动能εk=100eV;子弹动量p=6.63×106 kg·m·s-1,求它们的德布罗意波长。
解:因电子动能较小,速度较小,可用经典物理学求解。

由于德布罗意博士论文独创性,得到了答辩委员会的高度评价,但是人们总觉得他的想法过于玄妙,无法接受。于是,有人质问:有什么可以验证这一新的观念?
X射线照在晶体上可以产生衍射,电子打在晶体上也能观察电子衍射。
如果你是德布罗意,将如何验证自己的观点?
二、物质波的实验验证
1927年,C.J.戴维森与雷斯特·革末做电子衍射实验,验证电子具有波动性。
电子衍射实验1
戴维逊和革末的实验是用电子束垂直投射到镍单晶,电子束被散射。其强度分布可用德布罗意关系和衍射理论给以解释,从而验证了物质波的存在。
二、物质波的实验验证
电子束在穿过细晶体粉末或薄金属片后,也像 X 射线一样产生衍射现象。
电子衍射实验2
1927年,G.P.汤姆逊(J.J.汤姆逊之子)也独立完成了电子衍射实验。与C.J.戴维森共获 1937年诺贝尔物理学奖。
此后,人们相继证实了原子、分子、中子等都具有波动性。
电子衍射
X光衍射
二、物质波的实验验证
1961年克劳斯·约恩松(Claus J?nsson)将一束电子加速到50keV,让其通过一缝宽为a=0.5×10-6m,间隔为d=2.0×10-6m的双缝,当电子撞击荧光屏时,发现了类似于双缝衍射实验结果。
电子双缝实验




























物质波的一个最重要的应用就是电子显微镜的发明。第一台电子显微镜是由德国鲁斯卡研制成功,荣获1986年诺贝尔物理奖。
从波动光学可知,由于显微镜的分辨本领与波长成反比,光学显微镜的最大分辨距离大于0.2 μm,最大放大倍数也只有1000倍左右。
自从发现电子有波动性后,电子束德布罗意波长比光波波长短得多,而且极方便改变电子波的波长,这样就能制造出用电子波代替光波的电子显微镜。
物质波的应用
电子显微镜
电子显微镜下的薰衣草叶子
电子显微镜下的纳米纤维
电子显微镜下的灰尘
电子显微镜下的蓼属植物花粉
电子显微镜下的红细胞
三、量子力学的建立
波尔氢原子理论
康普顿散射理论
爱因斯坦光电效应理论
普朗克黑体辐射理论
德布罗意
物质波
假说
普朗克常量
德国物理家海森堡和玻恩等人对玻尔的氢原子理论进行了推广和改造,使之可以适用于更普遍的情况。他们建立的理论被称为矩阵力学。
1926年,奥地利物理学家薛定谔提出了物质波满足的方程——薛定谔方程,使玻尔理论的局限得以消除。由于这个理论的关键是物质波,因此被称为波动力学。
1926年,薛定谔和美国物理学家埃卡特很快又证明,波动力学和矩阵力学在数学上是等价的,它们是同一种理论的两种表达方式。
随后数年,在以玻恩、海森堡、薛定谔以及英国的狄拉克和奥地利的泡利为代表的众多物理学家的共同努力下,描述微观世界行为的理论被逐步完善并最终完整地建立起来,它被称为量子力学。
1927年第五届索尔维会议参加者合影
四、量子力学的应用
1.借助量子力学,人们深入认识了微观世界的组成、结构和属性。
2.量子力学推动了核物理和粒子物理的发展。
核物理的发展,还让人们成功地认识并利用了原子核反应堆所释放的能量——核能。爱因斯坦说:“这是人们第一次利用太阳以外的能量。”
3.量子力学推动了原子、分子物理和光学的发展。
激光、核磁共振、原子钟,等等。
4.量子力学推动了固体物理的发展。
利用半导体的独特性质发明了晶体管等各类固态电子器件,并结合激光光刻技术制造了大规模集成电路,俗称“芯片”。靠它们,人们才可以制造体积小且功能强大的电子计算机、智能手机等信息处理设备,真正走进了信息时代。此外,固体物理学的发展,还为人们带来了低能耗高亮度的半导体发光技术,并让人们认识了超导等一系列神奇的现象。
1.判一判
(1)德布罗意认为实数粒子也具有波动性。( )
(2)光的波粒二象性彻底推翻了麦克斯韦电磁理论。( )
(3)波长较长的光只有波动性,没有粒子性。( )
(4)向前飞行的子弹具有波动性。( )


×
×
2.下列说法中正确的( )
A.质量大的物体,其德布罗意波长短
B.速度大的物体,其德布罗意波长短
C.动量大的物体,其德布罗意波长短
D.动能大的物体,其德布罗意波长短
C
3.根据物质波理论,以下说法中正确的是( )
A.微观粒子有波动性,宏观物体没有波动性
B.宏观物体和微观粒子都具有波动性
C.宏观物体的波动性不易被人观察到是因为它的波长太长
D.速度相同的质子和电子相比,电子的波动性更为明显
BD
4.2002年诺贝尔物理学奖中的一项是奖励美国科学家贾科尼和日本科学家小柴昌俊发现了宇宙X射线源。X射线是一种高频电磁波,若X射线在真空中的波长为λ,以h表示普朗克常量,c表示真空中的光速,以E和p分别表示X射线每个光子的能量和动量,则( )
A.E=hλ/c,p=0     B.E=hλ/c,p=hλ/c2
C.E=hc/λ,p=0 D.E=hc/λ,p=h/λ
D
5.如果一个中子和一个质量为10g的子弹都以103m/s的速度运动,则它们的德布罗意波的波长分别是多大?(中子的质量为1.67×10-27kg)
4.0×10-10m  6.63×10-35m(共30张PPT)
氢原子光谱和玻尔的原子模型
早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。
一、光谱
1.光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。有时只是波长成分的记录。
分类:发射光谱可分为两类:连续光谱和明线光谱。
定义:物体发光直接产生的光谱叫做发射光谱。
一、光谱
2.发射光谱
连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。炽热的固体、液体和高压气体的发射光谱是连续光谱。
例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。
一、光谱
(1)连续光谱
只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫谱线,各条谱线对应不同波长的光。稀薄气体或金属的蒸气的发射光谱是明线光谱。
明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。
实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。
一、光谱
(2)明线光谱
高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应。这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。因此吸收光谱中的暗谱线,也是原子的特征谱线。太阳的光谱是吸收光谱。
一、光谱
3.吸收光谱
钨丝白炽灯的光谱
铁电极弧光的光谱
分子状态的氢光谱
钡光谱
既然每种原子都有自己的特征谱线,我们就可以利用它来鉴别物质和确定物质的组成成分。这种方法称为光谱分析。它的优点是灵敏度高,样本中一种元素的含量达到10-13kg时就可以被检测到。
二、氢原子光谱的实验规律
许多情况下光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的一条重要途径。
氢气光谱管
分光镜
高压电源
二、氢原子光谱的实验规律
许多情况下光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的一条重要途径。
二、氢原子光谱的实验规律
二、氢原子光谱的实验规律
氢原子是最简单的原子,其光谱也最简单。
有两层含义,一是取一个值,可求出氢光谱中一条谱线的波长说明每一个值分别对应一条谱线,二是值只能取正整数值3,4,5,……
巴耳末公式:
里德伯常量
三、经典理论的困难
矛盾一:无法解释原子的稳定性
矛盾二:无法解释原子光谱的分立性
核外电子绕核运动
辐射电磁波
事实上:
原子是稳定的
事实上:辐射电磁波频率只是某些确定值
电子轨道半径连续变小
原子不稳定
辐射电磁波频率连续变化
四、玻尔原子理论的基本假设
假说1:轨道量子化
针对原子核式结构模型提出
围绕原子核运动的电子轨道半径只能是某些分立的数值。且电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射,也就是说,电子的轨道是量子化的。
四、玻尔原子理论的基本假设
假说2:定态(能级)假说
针对原子的稳定性提出
电子在不同的轨道上运动,原子处于不同的状态。根据玻尔理论,电子只能在特定轨道上运动,因此,原子的能量也只能取一系列特定的值。这些量子化的能量值叫作能级。原子中这些具有确定能量的稳定状态,称为定态。能量最低的状态叫作基态,其他的状态叫作激发态。
四、玻尔原子理论的基本假设
能级:量子化的能量值。
定态:原子中这些具有确定能量的稳定状态。
基态:能量最低的状态(离核最近)。
激发态:其他的状态。

1
2
3
假说2:定态(能级)假说
针对原子的稳定性提出
E4
1
2
3
4
5
E1
E3
E2
E5

E∞
n
基态
激发态
四、玻尔原子理论的基本假设
假说3:频率条件(跃迁假说)
针对原子光谱是线状谱提出
E4
1
2
3
4
5
E1
E3
E2
E5

E∞
n
基态
激发态
原子在始、末两个能级和(>)间跃迁时,发射(或吸收)光子的频率可以由前后能级的能量差决定:
(>)
四、玻尔原子理论的基本假设
假说3:频率条件(跃迁假说)
针对原子光谱是线状谱提出
E4
1
2
3
4
5
E1
E3
E2
E5

E∞
n
基态
激发态
(>)



跃 迁
电子克服库仑力做功增大电势能,
原子的能量增加
吸收光子
电子所受库仑力做正功减小电势能,
原子的能量减少
辐射光子


五、玻尔理论对氢光谱的解释
rn = n2r1
En = E1/n2
r1 = 0.053 nm
(n = 1,2,3,···)
玻尔从上述假设出发,利用库仑定律和牛顿运动定律,计算出了氢电子可能的轨道半径和对应的能量值。
E1 = -13.6eV
五、玻尔理论对氢光谱的解释



赖曼系(紫外线)
巴耳末系(可见光)
帕邢系(红外线)
布喇开系
逢德系

N=1
N=2
N=3
N=4
N=5
N=6
成功解释了氢光谱的所有谱线
+
五、玻尔理论对氢光谱的解释
五、玻尔理论对氢光谱的解释
五、玻尔理论对氢光谱的解释
五、玻尔理论对氢光谱的解释
1.从高能级向低能级跃迁
发射光子:以光子形式辐射出去(原子发光现象)。
2.从低能级向高能级跃迁
(1)吸收光子
对于能量大于或等于13.6eV的光子(电离);对于能量小于13.6eV的光子(要么全被吸收,要么不吸收)。
(2)吸收实物粒子能量
只要实物粒子动能足以使氢原子向高能级跃迁,就能被氢原子吸收全部或部分动能而使氢原子向高能级跃迁,多余能量仍为实物粒子的动能。
六、玻尔理论的局限性
汤姆孙发现电子
汤姆孙的枣糕模型
粒子散射实验
卢瑟福的核式结构模型
原子不可割
汤姆孙的枣糕模型
原子稳定性事实氢光谱实验
卢瑟福的核式结构模型
出现矛盾
复杂(氦)原子光谱
波尔模型
出现矛盾
出现矛盾
否定
建立
否定
建立
否定
建立
波尔模型
否定
量子力学 理论
建立
电子云
1.按照波尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道上,有关能量变化的说法中,正确的是( )
A.电子的动能变大,电势能变大,总能量变大
B.电子的动能变小,电势能变小,总能量变小
C.电子的动能变小,电势能变大,总能量不变
D.电子的动能变小,电势能变大,总能量变大
D
2.根据玻尔理论,某原子的电子从能量为 E 的轨道跃迁到能量为 E? 的轨道,辐射出波长为 λ 的光,以 h 表示普朗克常量,c 表示真空中的光速,则 E? 等于( )
A. B.
C. D.
C
3.欲使处于基态的氢原子被激发,下列可行的措施是( )
A.用10.2eV的光子照射
B.用11eV的光子照射
C.用14eV的光子照射
D.用11eV的电子碰撞
ACD
4.一群处于基态的氢原子吸收某种单色光的光子后,只能发出频率为 ν1、ν2、 ν3 的三种光子,且 ν1 > ν2 > ν3 ,则 ( )
A.被氢原子吸收的光子的能量为 hν1
B.被氢原子吸收的光子的能量为 hν2
C. ν1 = ν2+ ν3
D.被氢原子吸收的光子的能量为 hν1+ hν2+ hν3
AC(共39张PPT)
原子的核式结构模型
近代原子论:19世纪初,英国科学家道尔顿提出近代原子学说,他认为原子是微小的不可分割的实心球体,物质由原子组成,原子不能被创造,也不能被毁灭,在化学变化中原子不可分割,他们的性质在化学反应中保持不变。这一理论不仅为化学,也为物理学带来深远的影响。
古希腊原子论:公元前5世纪,希腊哲学家德谟克利特等人认为:万物是由大量的、无限小的、不可分割的微粒构成的,即原子。
早在1858年,德国物理学家普吕克尔就发现了气体导电时的辉光放电现象。
1876年,德国物理学家戈德斯坦认为管壁上的荧光是由于玻璃受到的阴极发出的某种射线的撞击而引起的,并把这种未知射线称之为阴极射线。
一、电子的发现
那么,阴极射线的本质是什么?电子的发现经历了怎样的曲折过程?
代表人物:赫兹。
认为这种射线的本质是一种电磁波的传播过程。
电磁波说
代表人物:汤姆孙。
认为这种射线的本质是一种高速粒子流。
粒子说
PK
一、电子的发现
实验装置:气体放电管
由阴极C发出的带电粒子通过小孔AB形成一束细细的阴极射线,它穿过两片平行的金属板D1D2之间的空间,到达右端带有标尺的荧光屏上P1点。
汤姆孙的实验
一、电子的发现
思考:
1.实验目的是什么?
2.判断阴极射线是否是带电粒子流的基本方法是什么?
3.测阴极射线比荷的基本思路是怎样的?
4.哪些量可以当做已知量处理?
一、电子的发现
1.实验目的:
(1)判断阴极射线是否带电。
(2)如果阴极射线带电,则测出其比荷。
2.判断阴极射线是否是带电粒子流的基本方法是什么?
让带电粒子通过电场或磁场,观察它是否偏转。
如果偏转则带电,否则不带电。
一、电子的发现
3.测阴极射线比荷的基本思路是怎样的?
4.哪些量可以当做已知量处理?
场强E,磁感应强度B,圆周运动的半径r
(1)先加电场使阴极射线偏转
(2)再加磁场,调整电场磁场的强度,使阴极射线不偏转
(3)每个阴极射线微粒受到的库仑力等于洛伦兹力,求出阴极射线的速度
(4)只保留磁场,阴极射线只受洛伦兹力,做匀速圆周运动,再求比荷
一、电子的发现
施加电场E之后,射线发生偏转并射到屏上P2处。由此可以推断阴极射线带有什么性质的电荷?怎么判断的?
带负电,因为场强E的方向竖直向上,而射线向下偏,说明电场力F的方向竖直向下,所以射线带负电。
一、电子的发现
再加磁场抵消阴极射线的偏转,使它从P2点回到P1,需要在两块金属板之间的区域再施加一个大小、方向合适的磁场。
这个磁场的方向是?根据什么判断?
垂直于黑板面向外,用左手定则判断。
一、电子的发现
设粒子质量为m,带电荷为e,受到磁场力和电场力的作用,如果不发生偏转,则受力平衡:
电场力:
磁场力:

. . . . . . . . . . . . . . . .




一、电子的发现
去掉D1、D2间的电场E,只保留磁场B,阴极射线在有磁场的区域将会形成一个半径为r的圆弧(r可以通过P3的位置算出)。

r


阴极射线是带负电的粒子流。
还可求出这种粒子的比荷。
一、电子的发现
汤姆孙还发现用不同材料的阴极做实验,比荷数值都相同。
说明:不同物质都能发射这种带电粒子,它是构成各种物质的共有成分。
汤姆孙还由实验测得的阴极射线的比荷是氢离子的比荷近2000倍。后来,汤姆孙直接测到了阴极射线粒子的电荷量,尽管当时测量很不准确,但足以证明这种粒子的电荷量与氢离子大致相同,质量比氢离子小得多。
一、电子的发现
阴极射线的本质
1.阴极射线的本质是电子。
2.电子是原子的组成部分,是比原子更基本的物质单元。
3.电子的电荷量与氢离子的电荷量相同。
一、电子的发现
正离子的轰击
紫外线照射
放射性物质
阴极射线
光电流
β射线
电子
金属受热
热离子流
发现电子以后,汤姆孙进一步研究又发现了许多新现象:
我看到的是:
1.它在电场中不偏转,因此不带电
2.它能穿透薄铝片,粒子是做不到的,但波可以!
电磁波说
赫兹
我用实验证明了:
1.带负电,且电荷量与质子相同
2.速度远小于电磁波传播速度
3.质量是最轻的原子 1/2000 左右
粒子说
汤姆孙
WIN
一、电子的发现
一、电子的发现
第一次较为精确测量出电子电荷量的是美国物理学家密立根利用油滴实验测量出来的。
密立根油滴实验
一、电子的发现
第一次较为精确测量出电子电荷量的是美国物理学家密立根利用油滴实验测量出来的。
密立根油滴实验
密立根实验更重要的发现是:电荷是量子化的,即任何带电体的电荷只能是的整数倍。
电子的电荷量
电子的质量
电子是原子的组成部分,由于电子是带负电的,而原子又是中性的,因此推断出原子中还有带正电的物质,几乎占有原子的全部质量。
电子的电荷量
电子的质量
思考:这两种物质是怎样构成原子的呢?
二、原子的核式结构模型
1.汤姆孙的原子模型
原子是一个球体,里面充满了均匀分布的带正电的流体,电子镶嵌在正电荷液体中,就象枣点缀在一块蛋糕里一样,所以又被人们称为“枣糕模型”。
电子等间隔地排列在与正电球同心的圆周上,并以一定的速度做圆周运动从而发出电磁辐射,原子光谱所反映的就是这些电子的辐射频率。
正电荷
电子
2.粒子散射实验
二、原子的核式结构模型
实验装置:
放射源:放射性元素钋(Po)放出粒子,粒子是氦核,带2e正电荷,质量是氢原子的4倍,具有较大的动能。
金箔:作为靶子,厚度1μm,重叠了3000层左右的金原子。
荧光屏:粒子打在上面发出闪光。
显微镜:通过显微镜观察闪光,且可360°转动观察不同角度粒子的到达情况。
2.粒子散射实验
根据汤姆生模型猜想的结果:
电子质量很小,对粒子的运动方向不会发生明显影响;由于正电荷均匀分布,粒子所受库仑力也很小,故粒子偏转角度不会很大。
二、原子的核式结构模型
2.粒子散射实验
实验现象:
绝大多数粒子穿过金箔后仍沿原来方向前进;
少数粒子(约占8000分之一)发生了较大的偏转;
极少数粒子的偏转超过了90°,有的甚至几乎被撞了回来。
二、原子的核式结构模型
实验结果与之前预测完全不一致!
原子结构模型必须重新构思!
2.原子的核式结构模型
1.在原子的中心有一个很小的核,叫做原子核。
2.原子的全部正电荷和几乎全部质量都集中在原子核里。
3.带负电的电子在核外空间绕着核旋转。
二、原子的核式结构模型
2.原子的核式结构模型
粒子穿过原子时,电子对粒子运动的影响很小,影响粒子运动的主要是带正电的原子核。
而绝大多数的粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变,只有极少数粒子可能与核十分接近,受到较大的库仑斥力,才会发生大角度的偏转 。
二、原子的核式结构模型
2.原子的核式结构模型
1919年,卢瑟福用粒子轰击氮核,得到了质子,进而猜想原子核内存在不带电的中子,这一猜想被他的学生查德威克用实验证实,并得到公认。
二、原子的核式结构模型
质子
中子
核子
质子数
电荷数
三、原子核的电荷与尺度
根据卢瑟福的原子核式模型和粒子散射的实验数据,可以推算出各种元素原子核的电荷数,还可以估计出原子核的大小。
(1)原子的半径约为10-10m、原子核半径约是10-15m,原子核的体积只占原子的体积的万亿分之一。
(2)原子核所带正电荷数与核外电子数以及该元素在周期表内的原子序数相等。
三、原子核的电荷与尺度
体育场——原子
露珠——原子核
1.电子的发现说明( )
A.原子是由原子核和电子组成的
B.物质是带电的且一定带负电
C.原子可进行再分
D.原子核可再分
C
2.关于阴极射线,下列说法正确的是( )
A.阴极射线就是稀薄气体导电的辉光放电现象
B.阴极射线是在真空管内由阴极发出的电子流
C.阴极射线是某一频率的电磁波
D.阴极射线可以直线传播,也可被电场、磁场偏转
BD
3.一只阴极射线管,左侧不断有电子射出,若在管的正下方,放一通电直导线 AB 时,发现射线径迹向下偏,则( )
A.导线中的电流由A流向B
B.导线中的电流由B流向A
C.若要使电子束的径迹往上偏,可以通过改变AB中的电流方向来实现
D.电子束的径迹与AB中的电流方向无关
BC
4.有一电子(电荷量为e)经电压为U0的电场加速后,进入两块间距为d,电压为U的平行金属板间,若电子从两板正中间垂直电场方向射入,且正好能穿过电场,求:
(1)金属板AB的长度;
(2)电子穿出电场时的动能。
+

A
B
U0
?0
+
+
+



(1)
(2)
5.提出原子核式结构模型的科学家是( )
A.汤姆孙 B.法拉第
C.卢瑟福 D.奥斯特
C
6.在用α粒子轰击金箔的实验中,卢瑟福观察到的α粒子的运动情况是( )
A.全部α粒子穿过金属箔后,仍按原来的方向前进
B.绝大多数α粒子穿过金属箔后,仍按原来的方向前进,少数发生较大偏转,极少数甚至被弹回
C.少数α粒子穿过金属箔后仍,按原来的方向前进,绝大多数发生较大偏转,甚至被弹回
D.全部α粒子都发生很大偏转
B
7.卢瑟福α粒子散射实验的结果( )
A.证明了质子的存在
B.证明了原子核是由质子和中子组成的
C.说明原子的全部正电荷和几乎全部质量都集中在一个很小的核上
D.说明原子的电子只能在某些不连续的轨道上运动
C
8.在α粒子散射实验中,没有考虑α粒子跟电子的碰撞,其原因是( )
A.α粒子不跟电子发生相互作用。
B.α粒子跟电子相碰时,损失的能量极少,可忽略。
C.电子的体积很小,α粒子不会跟电子相碰。
D.由于电子是均匀分布的,α粒子所受电子作用的合力为零。
B
9.卢瑟福原子核式结构理论的主要内容有( )
A.原子的中心有个核,叫做原子核
B.原子的正负电荷都均匀分布在整个原子中
C.原子的全部正电荷和几乎全部质量都集中在原子核里
D.带负电的电子在核外绕核旋转
ACD
10.在卢瑟福的α粒子散射实验中,有少数α粒子发生大角度偏转,其原因是( )
A.原子的正电荷和绝大部分质量集中在一个很小的核上
B.正电荷在原子中是均匀分布的
C.原子中存在着带负电的电子
D.原子只能处于一系列不连续的能量状态中
A