第一节行星的运动
1.下列说法中正确的是( )
A.
地球是宇宙的中心,太阳、月亮和其他行星都绕地球运动
B.
太阳是静止不动的,地球和其他行星绕太阳运动
C.
地球是绕太阳运动的一颗行星
D.
日心说和地心说都正确反映了天体运动规律
2.在科学的发展历程中,许多科学家做出了杰出的贡献.下列叙述符合物理学史实的是( )
A.
开普勒以行星运动定律为基础总结出万有引力定律
B.
牛顿提出了万有引力定律,并通过实验测出了引力常量
C.
伽利略在前人的基础上通过观察总结得到行星运动三定律
D.
海王星是运用万有引力定律在“笔尖”下发现的行星
3.某行星沿椭圆轨道运动,远日点离太阳的距离为a,近日点离太阳的距离为b,过远日点时行星的速率为va,则过近日点时的速率为( )
A.vb=va
B.vb=va
C.vb=va
D.vb=va
4.如图所示是行星m绕太阳M运行情况的示意图,A点是远日点,B点是近日点,CD是椭圆轨道的短轴.下列说法中正确的是( )
A.
行星运动到A点时速度最大
B.
行星运动到C点或D点时速度最小
C.
行星从C点顺时针运动到B点的过程中做加速运动
D.
行星从B点顺时针运动到D点的时间与从A点顺时针运动到C点的时间相等
5.如图,O表示地球,P表示一个绕地球沿椭圆轨道做逆时针方向运动的人造卫星,AB为长轴,CD为短轴.在卫星绕地球运动一周的时间内,从A到B的时间为tAB,同理从B到A、从C到D、从D到C的时间分别为tBA、tCD、tDC.下列关系式正确的是( )
A.tAB>tBA
B.tABC.tCD>tDC
D.tCD6.行星的运动可看作匀速圆周运动,则行星绕太阳运动的轨道半径R的三次方与周期T的平方的比值为常量,即=k,下列说法正确的是( )
A.
公式=k只适用于围绕太阳运行的行星
B.
围绕同一星球运行的行星或卫星,k值不相等
C.k值与被环绕星球的质量和行星或卫星的质量都有关系
D.k值仅由被环绕星球的质量决定
7.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )
A.
太阳位于木星运行轨道的中心
B.
火星绕太阳运行速度的大小始终相等
C.
火星和木星公转周期之比的二次方等于它们轨道半长轴之比的三次方
D.
相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
8.如图所示,B为绕地球沿椭圆轨道运行的卫星,椭圆的半长轴为a,运行周期为TB;C为绕地球沿圆周运动的卫星,圆周的半径为r,运行周期为TC.下列说法或关系式正确的是( )
A.
地球位于B卫星轨道的一个焦点上,位于C卫星轨道的圆心上
B.B卫星和C卫星运动的速度大小均不变
C.=,该比值的大小与地球和卫星有关
D.≠,该比值的大小不仅与地球有关,还与太阳有关
9.(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆.设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则( )
A.T卫<T月
B.T卫>T月
C.T卫<T地
D.T卫=T地
10.(多选)冥王星绕太阳的公转轨道是个椭圆,公转周期为T0,其近日点到太阳的距离为a,远日点到太阳的距离为b,半短轴的长度为c,A、B、C、D分别为长短轴的端点,如图所示.忽略其他行星对它的影响则( )
A.
冥王星从A→B→C的过程中,速率逐渐变大
B.
冥王星从A→B→C的过程中,速率逐渐变小
C.
冥王星从A→B所用的时间等于
D.
冥王星从A→B所用的时间小于
11.土星直径为119
300
km,是太阳系中第二大行星,自转周期只需10
h
39
min,公转周期为29.4年,距离太阳1.432×109km。土星最引人注目的是绕着其赤道的巨大光环。在地球上人们只需要一架小型望远镜就能清楚地看到光环,环的外沿直径约为274
000
km。请由上面提供的信息,估算地球距太阳有多远。(保留三位有效数字)
12.如图所示,地球的公转轨道接近圆,但彗星的运动轨道则是一个非常扁的椭圆.天文学家哈雷曾经在1662年跟踪过一颗彗星,他算出这颗彗星轨道的半长轴约等于地球公转半径的18倍,并预言这颗彗星将每隔一定时间就会再次出现.
(1)这颗彗星最近出现的时间是1986年,它下次飞近地球大约是哪一年?
(2)若哈雷彗星在近日点的线速度为v1,在远日点的线速度为v2,则哪个线速度大?
答案
1.【答案】C
【解析】宇宙中任何天体都是运动的,地心说和日心说都有局限性,只有C正确.
2.【答案】D
【解析】开普勒通过深入研究第谷的数据提出行星运动三大定律,故A错误;牛顿发现了万有引力定律,但未测定出引力常量G,卡文迪许测定了引力常量G,故B错误;开普勒在前人的基础上通过观察总结得到行星运动三定律,故C错误.海王星是先根据万有引力定律算出轨道,然后在计算的轨道上发现的,D正确.
3.【答案】C
【解析】如图所示,A、B分别为远日点、近日点,由开普勒第二定律可知,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间Δt,则有avaΔt=bvbΔt,所以vb=va,故选C.
4.【答案】C
【解析】由开普勒第二定律知,行星在A点速度最小,在B点速度最大,所以行星从A向B顺时针运动的过程中速度在增大,行星从B点顺时针运动到D点的时间小于从A点顺时针运动到C点的时间,故A、B、D错误,C正确.
5.【答案】D
【解析】由卫星做椭圆运动的对称性得tAB=tBA,选项A、B错误;由开普勒第二定律,卫星在近地点时运动快,在远地点时运动慢,所以tCD6.【答案】D
【解析】公式=k适用于所有环绕天体围绕中心天体的运动,故A错误;围绕同一星球运行的行星或卫星,k值相等;围绕不同星球运行的行星或卫星,k值不相等,故B错误;常数k是由中心天体质量决定的,即仅由被环绕星球的质量决定,故C错误,D正确。
7.【答案】C
【解析】太阳位于木星运行椭圆轨道的一个焦点上,选项A错误.由于火星沿椭圆轨道绕太阳运行,火星绕太阳运行的速度大小在变化,选项B错误.根据开普勒行星运动定律可知,火星与木星公转周期之比的二次方等于它们轨道半长轴之比的三次方,选项C正确.相同时间内,火星与太阳连线扫过的面积不等于木星与太阳连线扫过的面积,选项D错误.
8.【答案】A
【解析】由开普勒第一定律可知,选项A正确;由开普勒第二定律可知,B卫星绕地球转动时速度大小在不断变化,选项B错误;由开普勒第三定律可知,==k,比值的大小仅与地球有关,选项C、D错误.
9.【答案】AC
【解析】因r月>r同>r卫,由开普勒第三定律=k可知,T月>T同>T卫,又同步卫星的周期T同=T地,故有T月>T地>T卫,选项A、C正确.
10.【答案】BD
【解析】根据开普勒第二定律知冥王星从A→B→C的过程中,速率逐渐变小,所以A错误,B正确;由于太阳在椭圆的焦点上,不在椭圆中心,且冥王星从A→B平均速率大于从B→C的平均速率,故所用时间小于,所以C错误,D正确.
11.【答案】1.50×108km
【解析】根据开普勒第三定律:=k,k只与太阳的质量有关,则=,其中T为公转周期,R为行星到太阳的距离,代入数据可得:=
可得:R地≈1.50×1011m=1.50×108km。
12.【答案】(1)2062年 (2)v1
【解析】(1)由开普勒第三定律=k得:()3=()2
解得T哈=T地≈76年
即下次飞近地球是(1986+76)年=2062年.
(2)由开普勒第二定律知v1>v2.