中小学教育资源及组卷应用平台
第十八章
平行四边形单元测试卷
题号
一
二
三
总分
17
18
19
20
21
22
分数
一、选择题(每题3分,共36分)
1.如图,在平行四边ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为(
)
A.3
B.2.5
C.2
D.1.5
2.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是( )
A.3
B.4
C.5
D.6
3.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件(
)
A.∠A+∠C=180°
B.∠B+∠D=180°
C.∠A+∠B=180°
D.∠A+∠D=180°
4.如图,中,,是的中线,是的中点,连接,若,,则(
)
A.
B.
C.
D.
5.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )
A.
B.
C.5
D.
6.下列命题中,真命题是(
)
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
7.下列说法中错误的是(
)
A.四边相等的四边形是菱形
B.菱形的对角线长度等于边长
C.一组邻边相等的平行四边形是菱形
D.对角线互相垂直平分的四边形是菱形
8.
如图,在菱形OBCD中,OB=1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90°,得到菱形OB′C′D′,则点C′的坐标为( )
A.(,)
B.(,-)
C.(,-)
D.(,)
9.如图,在平面内有一等腰Rt△ABC,∠ACB=90°,点A在直线l上.过点C作CE⊥1于点E,过点B作BF⊥l于点F,测量得CE=3,BF=2,则AF的长为( )
A.5
B.4
C.8
D.7
10.如图,平行四边形ABCD绕点A逆时针旋转300,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=(
)
A.155°
B.170°
C.105°
D.145°
二、填空题(每题3分,共18分)
11.如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,
AB=5cm,EC=2cm则BC=_________cm.
12.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=_____.
13.如图,平行四边形OABC(两组对边分别平行且相等)的顶点A,C的坐标分别为(5,0),(2,3),则顶点B的坐标为_______.
14.在Rt△ABC中,∠C=90°,BC=6,AC=8,则斜边上的中线长为________。
15.如图,在?ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF与CE交于点Q,若S△APD=20cm2,S△BQC=30cm2,则图中阴影部分的面积为____cm2.
16.如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF的长为_____.
17.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE长是
.
18.如图,在四边形ABCD中,∠ADC=900,∠BAD=600,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE,EF,DF,则DF的长为
.
三、解答题
19.如图所示中,EF分别是边AD,BC上的点,且.
(1)求证:;
(2)连结AF,若,,求的度数.
20.已知?ABCD中,E,F分别是边AB,CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
21.
(8分)
如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
22.
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.
23.
如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.
24.
(8分)如图,已知△ABC中,AB=AC,D为△ABC所在平面内的一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB于点E、F.
(1)如图1,当点D在线段BC上时,通过观察分析线段DE、DF、AB之间的数量关系,并说明理由;
(2)如图2,当点D在直线BC上,其它条件不变时,试猜想线段DE、DF、AB之间的数量关系(请直接写出等式,不需证明);
(3)如图3,当点D是△ABC内一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB和直线BC于E、F和G.试猜想线段DE、DF、DG与AB之间的数量关系(请直接写出等式,不需证明).
答案
1.C
2.B
3.D
4.C
5.D
6.
C
7.B
8.B
9.B
10.A.
11.3.
12.2
13.(7,3).
14.5
15.50
16.
.
17.答案为:6.5.
18.答案为:;
19.(1)在平行四边形ABCD中,,,
∵,
∴,
∴四边形BEDF是平行四边形
∴
(2)∵,
∴
∵
∴
20.(1)在平行四边形ABCD中,AB=CD,AB∥CD.
∵E、F是AB、CD中点,
∴BE=AB,DF=CD.
∴BE=CF.
∵EB∥DF,
∴四边形EBFD是平行四边形;
(2)∵AD=AE,∠A=60°,
∴△ADE是等边三角形.
∴DE=AD=2,
又∵BE=AE=2,
由(1)知四边形EBFD是平行四边形,
∴四边形EBFD的周长=2(BE+DE)=8.
21.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,
∴∠DAF+∠BAF=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠ABE=∠DAF,
∵在△ABE和△DAF中,
,
∴△ABE≌△DAF(ASA),
∴AF=BE;
(2)解:MP与NQ相等.
理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,
由(1)可知MP=NQ.
22.
(1)证明:∵在△ABC和△ADC中,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
∵在△ABF和△ADF中,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵∠AFB=∠CFE,
∴∠AFD=∠CFE,
∴∠BAC=∠DAC,∠AFD=∠CFE.
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
又∵∠BAC=∠DAC,
∴∠CAD=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形;
(3)当EB⊥CD时,∠EFD=∠BCD,
理由:∵四边形ABCD为菱形,
∴BC=CD,∠BCF=∠DCF,
在△BCF和△DCF中,
∴△BCF≌△DCF(SAS),
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠EFD=∠BCD.
23.
(1)证明:∵AD∥BC,CE=AD,
∴四边形ACED是平行四边形,
∴AC=DE,
∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,
∴AC=BD,
∴BD=DE.
(2)解:过点D作DF⊥BC于点F,
∵四边形ACED是平行四边形,
∴CE=AD=3,AC∥DE,
∵AC⊥BD,
∴BD⊥DE,
∵BD=DE,
∴S△BDE=BD?DE=BD2=BE?DF=(BC+CE)?DF=(BC+AD)?DF=S梯形ABCD=16,
∴BD=4,
∴BE=BD=8,
∴DF=BF=EF=BE=4,
∴CF=EF-CE=1,
∴AB=CD==.
24.【解答】解:(1)DE+DF=AB.理由如下:
如图1.∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∴DE=AF.
∵DF∥AC,∴∠FDB=∠C,∵AB=AC,∴∠C=∠B,∴∠FDB=∠B,
∴DF=FB,∴DE+DF=AF+FB=AB;
(2)当点D在直线BC上时,分三种情况:
①当点D在CB延长线上时,如图2①,AB=DE﹣DF;
②当点D在线段BC上时,如图1,AB=DE+DF;
③当点D在BC的延长线上时,如图2②,AB=DF﹣DE;
(3)如图3,AB=DE+DG+DF.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)