人教版七年级上册数学1.5.1乘方教案

文档属性

名称 人教版七年级上册数学1.5.1乘方教案
格式 zip
文件大小 151.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-05-27 20:47:24

图片预览

文档简介

1.5.1乘方(1)

目标预设
一、知识与能力
1、在现实背景中,理解有理数乘方的意义。
2、能进行有理数的乘方运算。
二、过程与方法
变“幂”为“乘”是由转化的思想把新问题(有理数乘方)转化为旧知识(有理数的乘法)来解决。
三、情感、态度、价值观
通过观察、类比、归纳得出正确的结论。

教学重难点
一、重点:在理解有理数乘方意义的基础上进行有理数的乘方运算。
二、难点:与所学知识进行衔接,处理带各种符号的乘方运算。

教学准备
一、教具:细胞分裂示意图
二、预习建议:
1、乘方的定义。
2、乘方的初步运算。

预习导学
1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果。
2.结合学生熟悉的边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容。

教学过程
一、复习提问
1.几个不等于零的有理数相乘,积的符号是怎样确定的?
答:几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.
2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
答:边长为2时,正方形的面积为2×2=22=4,棱长为2的正方体的体积为2×2×2=23=8.
二、新授
边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.
a·a简记作a2,读作a的平方(或二次方).
a·a·a简记作a3,读作a的立方(或三次方).
让我们再看一个例子,某种细胞每过30分钟便由1个分裂成2个,经过5个时,这种细胞由1个分裂成多少个?
1个细胞30分钟分裂成2个,1小时后分裂成2×2,1.5小时后分裂成2×2×2,…,5小时后要分裂10次,分裂成
=1024(个)
为了简便,可将记作210.
一般地,几个相同的因数a相乘,记作an.即=an
这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.
例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).
思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?()2与呢?
答:32的底数是3,指数是2,读作3的2次幂,表示3×3,结果是9;23的底数是2,指数是3,读作2的3次幂,表示2×2×2,结果是8.
(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.
(-2)3与-23的意义不相同,其结果一样.
(-2)4的底数是-2,指数是4,读作-2的四次幂,表示
(-2)×(-2)×(-2)×(-2),
结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为
-(2×2×2×2),其结果为-16
(-2)4与-24的意义不同,其结果也不同.
()2的底数是,指数是2,读作的二次幂,表示×,结果是;表示32与5的商,即,结果是.
因此,当底数是负数或分数时,一定要用括号把底数括起来.
一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.
因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.
例1:计算:
(1)(-4)3;
(2)(-2)4;
(3)(-)5;
(4)33;
(5)24;
(6)(-)2.
解:(1)(-4)3=(-4)×(-4)×(-4)=-64
(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16
(3)(-)5=(-)×(-)×(-)×(-)×(-)=-
(4)33=3×3×3=27
(5)24=2×2×2×2=16
(6)(-)2=(-)×(-)=
例2:用计算器计算(-8)5和(-3)6.
解:用带符号键(-)的计算器.
开启计算器后按照下列步骤进行:

(-)
8


5
=
显示:(-8)^
5
-32768
即(-8)5=-32768

(-)
3


6
=
显示:(-3)^
6
729
即(-3)6=729
用带符号转换键
+/-
的计算器:
8
+/-

5
=
显示:-32768
3
+/-

6
=
显示:729
所以(-8)5=-32768
(-3)6=729
从例1和例2,你能发现正数的幂、负数的幂的正负有什么规律?
底数为正数时,不论指数是偶数还是奇数,其结果都是正数.
若底数为负数,当指数是偶数时,其结果是正数,当指数是奇数时其结果为负数.
实际上这可以根据有理数的乘法法则,积的符号由负因数的个数来确定,负因数是奇数个时,积为负数,负因数个数为偶数时,积为正.
因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.
三、巩固练习
1.课本第52页练习1、2.
2.补充练习.
(1)下面各式计算正确的是(
).
A.-22=-4
B.-(-2)2=4
C.(-3)2=6
D.(-3)3=1
(2)下列各式是否正确,若有错误,请改正过来.
①∵43=4×3=13,34=3×4=12,∴43=34
②∵(-3)2=-3×3=-9,-32=-3×3=-9,∴(-3)2=-92
(3)如果(-2)m>0,则(-1)m=_______;如果(-)n<0,则(-1)n=_____.
四、课堂小结
正确理解乘方的意义,a
n表示n个a相乘的积.注意(-a)n与-a
n
两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a
n底数是a,表示n个a相乘的积的相反数.当n为偶数时,(-a)n与-a
n互为相反数,当n为奇数时,(-a)n与-a
n相等.
五、作业布置
1.课本第47页习题1.5第1题,第48页第11、12题.
2.选用课时作业设计.
PAGE