北师大版八年级数学下册 6.3三角形的中位线 教案

文档属性

名称 北师大版八年级数学下册 6.3三角形的中位线 教案
格式 zip
文件大小 73.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-05-29 15:21:18

图片预览

文档简介

6.3三角形的中位线
【教学目标】
【知识与技能】
1.知道三角形中位线的概念,明确三角形中位线与中线的不同.
2.理解三角形中位线定理,并能运用它进行有关的论证和计算.
【过程与方法】
引导学生通过观察.实验.联想来发现三角形中位线的性质,培养学生观察问题.分析问题和解决问题的能力.
【情感态度】
创设问题情景,激发学生的热情和兴趣,激活学生思维.
【教学重点】
掌握中位线的定义以及中位线定理.
【教学难点】
1.综合运用平行四边形的判定及中位线定理解决问题.
2.
三角形中位线定理的灵活应用.
【教学过程】
一、情境导入
问题1:如图所示,吴伯伯家有一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?
问题2:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?
操作:(1)剪一个三角形,记为△ABC;
(2)分别取AB,AC中点D,E,连接DE;
(3)
沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD.
【教学说明】通过一个有趣的动手操作问题入手,激发学生学习兴趣.为后面中位线的证明做准备.
二、合作探究
探究点:三角形的中位线
【类型一】
利用三角形中位线定理求线段的长
如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为(  )
               
A.
B.3
C.6
D.9
解析:∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=6.故选C.
方法总结:本题考查了三角形中位线定理,等腰三角形的判定与性质.解题的关键是熟记性质并熟练应用.
【类型二】
利用三角形中位线定理求角
如图,C、D分别为EA、EB的中点,∠E=30°,∠1=110°,则∠2的度数为(  )
A.80°
B.90°
C.100°
D.110°
解析:∵C、D分别为EA、EB的中点,∴CD是三角形EAB的中位线,∴CD∥AB,∴∠2=∠ECD.∵∠1=110°,∠E=30°,∴∠ECD=80°,故选A.
方法总结:中位线定理牵扯到平行线,所以利用中位线定理中的平行关系可以解决一些角度的计算问题.
【类型三】
运用三角形的中位线性质进行证明
如图,在△ABC中,AB=5,AC=3,点N为BC的中点,AM平分∠BAC,CM⊥AM,垂足为点M,延长CM交AB于点D,求MN的长.
解析:为证MN为△BCD的中位线,应根据三线合一,得到DM=MC,即可解决问题.
解:∵AM平分∠BAC,CM⊥AM,∴AD=AC=3,DM=CM.∵BN=CN,∴MN为△BCD的中位线,∴MN=(5-3)=1.
方法总结:当已知三角形的一边的中点时,要注意分析问题中是否有隐含的中点.如已知一个三角形一边上的高又是这边所对的角平分线时,根据“三线合一”可知,这实际上是又告诉了我们一个中点.
【类型四】
中位线定理的综合应用
如图,E为平行四边形ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.
解析:本题可先证明△ABF≌△ECF,从而得出BF=CF,这样就得出了OF是△ABC的中位线,从而利用中位线定理即可得出线段OF与线段AB的关系.
解:AB=2OF.
证明如下:∵四边形ABCD是平行四边形,∴AB=CD,OA=OC.∴∠BAF=∠CEF,∠ABF=∠ECF.∵CE=DC,在平行四边形ABCD中,CD=AB,∴AB=CE.∴在△ABF和△ECF中,∴△ABF≌△ECF(ASA),∴BF=CF.∵OA=OC,∴OF是△ABC的中位线,∴AB=2OF,AB∥OF.
方法总结:本题综合的知识点比较多,解答本题的关键是判断出OF是△ABC的中位线.
三、板书设计
1.三角形的中位线
连接三角形的两边中点的线段叫做三角形的中位线.
2.三角形中位线定理
三角形的中位线平行于第三边,且等于第三边的一半.
四、教学反思
本节课,通过实际生活中的例子引出三角形的中位线,又从理论上进行了验证.在学习的过程中,体会到了三角形中位线定理的应用时机.对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.
本节课以探究三角形中位线的性质及证明为主线,开展教学活动.在三角形中位线定理探究过程中,学生先是通过动手画图、观察、测量、猜想出三角形中位线的性质,然后师生利用几何画板的测量和动态演示功能验证猜想的正确性,再引导学生尝试构造平行四边形进行证明.通过知识的形成过程,使学生体会探究数学问题的基本方法;通过定理的探究与证明,努力培养学生分析问题和解决问题的能力,提升学生数学的思维品质.