人教版八年级数学上册11.3.2多边形的内角和教案(表格式)

文档属性

名称 人教版八年级数学上册11.3.2多边形的内角和教案(表格式)
格式 zip
文件大小 115.1KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-05-30 13:10:59

图片预览

文档简介

个人教学设计
课题名称:多边形的内角和
年级学科
八年级数学
教材版本
人教版
一、教学内容分析
《多边形的内角和》是人教版《数学》八年级上册第十一章第三节《多边形及其内角和》的第二课时。教学内容是多边形的内角和定理的推导和应用。起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将多边形内角和应用于平面镶嵌、环环相扣、层层递进,这样编排易于激发学生学习的兴趣,适合学生的认知特点。
二、教学目标
1.知识目标:了解多边形内角和公式。能对多边形的内角和公式进行应用,解决实际问题。2.数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。3.解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。4.情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。教学重点是用多种方法探究得出多边形内角和公式,教学难点是启发引导学生通过不同的途径将多边形转化为三角形。
三、学习者特征分析
学生已经学习了求三角形的内角和的方法,掌握了多边形有关概念,理解了多边形的对角线。这为本节课的学习打下了一定的基础。在设计推导多边形内角和定理时首先采用作对角线将多边形划分为若干三角形的方法,然后再探索其他方法,这样比较符合学生的认知规律。另外,在以往的学习中,学生的动手实践、自主探究能力都得到一定的训练,本节课将进一步培养学生这些方面的能力。同时,本节课通过利用几何画板展示,动态图形展演充分调动学生学习的积极性和主动性,克服本阶段学生所具有的不良学习习惯.
四、教学流程
创设情境设疑激思→引导探究合作交流→启迪思维拓展创新→猜想验证拓展创新→分层练习巩固提高→反思小结布置作业
五、教学设计
教师活动
预设学生活动
设计意图
创设情境设疑激思
让我们再次走进多彩的图形世界,进一步探究有关多边形的问题。①我们知道三角形的内角和等于180度,正方形,长方形的内角和等于360度,那么其他四边形呢?②那么,五边形、六边形呢?(板书课题)
观看图片,回忆相关知识,自主思考问题。学生先独立思考每个问题再分组讨论。
展示多媒体课件中各种多边形实物。以问题引思考,导入新课题。
引导探究合作交流
问题:1、任意四边形的内角和是多少度?2、能否利用三角形的内角和进行转化呢?
设计并进行数学实验:方案一、任意画一个四边形,通过度量得出内角和。方案二、剪下四边形卡纸的三个内角,拼到最后一个内角上得内角和。方案三、连接四边形的一条对角线,将其转化为两个三角形,从而得出四边形内角和。
投影展示四边形四个内角的拼接;利用几何画板实际测量验证四边形的内角和
启迪思维拓展创新
问题:四人一个小组,讨论一下五边形的内角和应该怎样计算呢?启发:我们利用数学转化思想,把求多边形的内角和的问题转化为求若干三角形的内角和,关键是将n边形分割转化为三角形。再进一步想一想,就会有更多方法:如果点在多边形的其他位置呢?
探索一、在五边形内部任意取一个点p,与各个顶点连接。探索二、在五边形一条边上任意取一个点p,与不相邻的顶点连接。探索三、在五边形外部任意取一个点p,与各个顶点连接。探索四、过五边形一个顶点,作五边形的一条对角线,把五边形分成一个三角形和一个四边形,这样进行转化得到结论。
动画展示转化过程,让学生自己利用几何画板精确的度量功能亲自验证五边形的内角和。
猜想验证水到渠成
合作议一议,就会找到规律。问题:多边形的内角和与多边形的边数有什么关系?启发:①从五边形、六边形一个顶点作对角线,可引多少条对角线?可把多边形分成多少个三角形?内角和是多少?②分成的三角形的个数与多边形的边数有什么关系?③n边形从一个顶点可作多少条对角线?可构成多少个三角形?内角和怎样求?④你能得出求n边形内角和的公式吗?
学生主动实验,积极思考,踊跃交流。总结规律边数34567…n三角形数12345…n-2内角和180°×1180°×2180°×3180°×4180°×5…(n-2)×180°归纳结论:n边形的内角和=(n-2)×180°
投影仪展示分割过程,通过课件演示,形象的展示一般规律,学生易于理解化特殊为一般、分类和化归的思想来证明结论;得出多边形内角和定理。
分层练习巩固提高
低:(1)一个多边形的内角和等于1260?,它是几边形?中:(2)一个多边形的内角和是1440?
,且每个内角都相等,则每个内角的度数是(????)。高:(3)讨论回答:一个多边形的内角和比四边形的内角和多540?,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
学生先独立思考,再进行小组交流,然后进行汇报。提高学生分析问题和解决问题的能力。
通过多媒体课件展示问题串,方便有效,在展示时可以选择一般的学生进行简单的结果展示,选择较好的学生进行有难度的问题的原因和过程展示。
反思小结布置作业
引导学生对本节课学习中所得到的新知识,进行小结,提高学生自主建构知识网络,分析、解决问题的能力。
学生小结,教师完善;针对本节课的知识布置相关作业。
总结活动情况,重在肯定与鼓励。作业分层,使处于不同学习程度的学生均有所收获。
六、教学板书
见附件