北师大版八年级数学下册2.3 不等式的解集 教案

文档属性

名称 北师大版八年级数学下册2.3 不等式的解集 教案
格式 zip
文件大小 153.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-06-01 10:22:33

图片预览

文档简介

2.3
不等式的解集
【教学目标】
【知识与技能】
1.能根据具体情境理解不等式的解与解集的意义.
2.能在数轴上表示不等式的解集.
【过程与方法】
培养学生从现实情况中探索、发现并提出简单的数学问题的能力.
【情感态度】
通过从实际问题中建立数学模型、探索求不等式的解集的过程,让学生认识数学与人类生活的密切联系,体验数学的探究性和创造性.
【教学重点】
1.理解并掌握不等式解和解集的概念;
2.学会用数轴表示不等式的解集.
【教学难点】
不等式解集的数轴表示.
【教学过程】
一、情境导入
课前回顾:
1.我们已学习了不等式的基本性质,那么不等式的基本性质有哪些?它与等式的性质有何异同点?
2.方程的解的定义是什么?
3.类似地,你认为什么是不等式的解?这节课我们来研究不等式的解的相关知识.
问题:东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?
二、合作探究
探究点一:不等式的解和解集
下列说法中,错误的是(  )
A.不等式x<3有两个正整数解
B.-2是不等式2x-1<0的一个解
C.不等式-3x>9的解集是x>-3
D.不等式x<10的整数解有无数个
解析:A.不等式x<3有两个正整数解1,2,故A正确;B.-2是不等式2x-1<0的一个解,故B正确;C.不等式-3x>9的解集是x<-3,故C正确;D.不等式x<10的整数解有无数个,故D正确;故选C.
方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.
探究点二:用数轴表示不等式的解集
【类型一】
在数轴上表示不等式的解集
不等式3x+5≥2的解集在数轴上表示正确的是(  )
A.
B.
C.
D.
解析:解3x+5≥2,得x≥-1,故选B.
方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.
【类型二】
根据数轴求不等式的解
关于x的不等式x-3<的解集在数轴上表示如图所示,则a的值是(  )
A.-3
B.-12
C.3
D.12
解析:化简不等式,得x<.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.
方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.
针对性练习
1.判断正误:(1)不等式x-1>0有无数个解;
(2)不等式2x-3≤0的解集为x≥
.
答案:(1)对;(2)错.
2.填空:
(1)方程2x=4的解有(
)个,不等式2x<4的解有(
)个;
(2)不等式5x≥-10的解集是(
);
(3)不等式x≥-3的负整数解是(
);
(4)不等式x-1<2的正整数解是(
).
答案:(1)1
无数;(2)x≥-2;(3)-3、-2、-1;(4)1、2.
3.将数轴上x的范围用不等式表示:
(5)x应取大于-2且小于1的值或x等于-2.此不等式的解集在数轴上的表示为:答案:
(1)x>2;(2)x≤3;(3)x≥-1;(4)x<1;(5)-2≤x<1.
4.下列说法中,错误的是(

A.不等式x<2的正整数解有一个
B.-2是不等式2x-1<0的一个解
C.不等式-3x>9的解集是x>-3
D.不等式x<10的整数解有无数个
解析:A.不等式x<2的正整数解只有1,故本选项正确,不符合题意;
B.2x-1<0的解集为x<12,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;
C.不等式-3x>9的解集是x<-3,故本选项错误,符合题意;
D.不等式x<10的整数解有无数个,故本选项正确,不符合题意.故选C.
四、板书设计
1.不等式的解和解集
2.用数轴表示不等式的解集
五、教学反思
本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.在教学中要充分体现学生的积极参与和合作交流.让学生掌握采用类比方程的解得到不等式的解的方法,进一步深入了解问题,积极参与交流探索,并通过老师的引导,理解不等式的解和解集的意义.在学生自主练习、小组展示和交流质疑的过程中,老师能及时发现学生的不同见解,并对学生的思维误区及时进行指导纠正.