19.3课题学习:选择方案
学习目标:
1、会应用一次函数与一元一次方程和一元一次不等式的关系,解决实际生活中的方案问题。
2、培养学生分析问题、解决问题的能力
学习重点:会应用一次函数与一元一次方程和一元一次不等式的关系,解决实际生活中的方案问题。
学习难点:会应用一次函数与一元一次方程和一元一次不等式的关系,解决实际生活中的方案问题。
一、创设问题情境:
做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划是非常有必要的。
二、自主学习与合作探究:
问题一
怎样选取上网收费方式?
下表给出了A、B、C三种上宽带网的收费方式。
收费方式
月使用费∕元
包时上网时间∕h
超时费∕(元∕min)
A
30
25
0.05
B
50
50
0.05
C
120
不限时
选取哪种方式能结省上网费?
练习:
下面有两处移动电话计费方式
全球通神州行月租费50元/月0本地通话0.40元/分0.60元/分
你知道如何选择计费方式更省钱吗?
问题二
怎样租车
某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表
:
?
甲种客车
乙种客车
载客量(单位:人/辆)
45
30
租金
(单位:元/辆)
400
280
(1)共需租多少辆汽车?
(2)给出最节省费用的租车方案。
分析:(1)要保证240名师生有车坐
(2)要使每辆汽车上至少要有1名教师
根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为
_____。
讨论:
根据问题中的条件,自变量x
的取值应有几种可能?
为使240名师生有车坐,x不能
小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x
的取值为____
。
在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。
二、巩固与拓展:
例1、为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:
型号
占地面积
(单位:m2/个
)
使用农户数
(单位:户/个)
造价
(单位:
万元/个)
A
15
18
2
B
20
30
3
已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.
(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.
例2、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
?
A
B
成本(万元/套)
25
28
售价(万元/套)
30
34
(1)该公司对这两种户型住房有哪几种建房方案?
(2)该公司如何建房获得利润最大?
(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
注:利润=售价-成本
三、当堂检测:
1、
东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为了促销制定了两种优惠方案供顾客选择.
甲:买一支毛笔赠送一本书法练习本.????
乙:按购买金额打九折付款.
某校欲为校书法兴趣组购买这种毛笔10支,书法练习本x(x≤10)本.如何选择方案购买呢?
2、学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示.
根据图象回答:
(1)乙复印社的每月承包费是多少?
(2)当每月复印多少页时,两复印社实际收费相同?
(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?
3、
某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
?4、为了鼓励小强勤做家务,培养他的劳动意识,小强每月的生活费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的。若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y(元),则y(元)和x(小时)之间的函数图象如图所示。
(1)根据图象,请写出小强每月的基本生活费为多少元?父母是如何奖励小强家务劳动的?
(2)写出当0≤x≤20时,相应的y与x之间的函数关系式;
(3)若小强5月份希望有250元费用,则小强4月份需做家务多少小时?
5、某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品A和B共8吨,已知生产每吨A,B产品所需的甲、乙两种原料如下表:
?
甲原料
乙原料
A产品
0.6吨
0.8吨
B产品
1.1吨
0.4吨
销售A,B两种产品获得的利润分别为0.45万元/吨、0.5万元/吨.若设化工厂生产A产品x吨,且销售这两种产品所获得的总利润为y万元.
(1)求y与x的函数关系式,并求出x的取值范围;
(2)问化工厂生产A产品多少吨时,所获得的利润最大?最大利润是多少?
1