七宝中学高一下期中数学试卷
填空题
1.若cosa=
213
2.已知six=,x∈,,则cosx=
3.已知{an}是等比数列,首项为3,公比为一,则前4项的和为
若uana=3,则
5.等差数列{an}的前n项和为S。,a4=1,则S=
6.已知扇形的圆心角为2zx,半径为5,则扇形的而积为
7.在数列{an}中,a2=5an1-a,=2(neN),则数列{an}的通项an,=
8.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的三斜公式”,设△ABC
角A,B,C的对边分別为a,b,c,而积为S,则“三斜求积公式为
+2-),若mA-4mcB=,则用三斜求积“公式求得△A
的而积为
9.函数y=si2x+的图像向石平移个单位后与所数f(x)的图像重合,则下列结论
中正确的是
①f(x)的一个周期为-2x;②f(x)的图像关于x=7对称
0xs7f(x)的个零点;④fx)在-,,2单调避减
10.已知函数(x)=3sinx+4cosx,x1,x2∈[,x],则∫(x1)-f(x2)的最大值是
1.在锐角△ABC中,内角ABC的对边分别为abc,若a2+b(b-√3a)21c=1,则
√3a-b的取值范围为
12.已知数列{an}满足a1=4,a,=2an+2(n≥2,nCN),若不等式2n2-n-3<(5-)n
对任意n∈N恒成立,则实数λ的取值范围是
选择题
13.閃数y6∈R的最小正周期为()
丌
14.已知k∈Z,下列各组角中,终边相同的是()
A.2kx与k丌
B.2kx+x与4kx±r
C.kx+-与2k
15.已知函数f(x)=√3
s
sin
ar+
coso(o>0)在[0刀]上有两个零点,则a的取值范围为
11
17
11
I
58
6
16.有·个三人报数游戏:首先A报数字1,然后B报下两个数字2,3,接下来C报下三个
数字4,5,6,然后轮到A报下四个数字7,8,9,10,依次
直到报出10000,则A报出的
第2020个数字为()
以上都不对
三、解答题
17.在△AHC中,三个内角A,B,C所对的边分别为a,b,c,且a2+c2-b2=ac
(1)求B
2)若a+c=6,三角形的而积SA=23,求b
18.已知S为{an}的前n项和,{}是等比数列H爷项均为止数,H
=2n2+m,b=2.b+b=
(1)求{an}和{bn}的通项公式
(2)记Gn=an…bn,求数列{(n}的前n项和T
19.如图,学校门口有一块扇形空地OMN,已知半径为常数R,∠MON=,现由于防
疫期问,学校要在其中圈出一块矩形场地ABCD作为休温检测室使用,其中点A,B在弧
MN上,且线段AB平行丁线段MN
(1)当点A为弧MN的一个三等分点,求矩形ABCD的面积
)设∠AOB=0,当A在何处时,矩形ABCD的而积最大?最大值为多少?