轴对称

文档属性

名称 轴对称
格式 zip
文件大小 2.2MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2011-05-04 06:52:00

文档简介

(共18张PPT)
展示图片,感受对称的普遍性和学习的必要性。
蝴蝶的对称是自然界的一种生物现象。
民间艺人的剪纸也利用到图形的对称。
基本图形
规范语言
概括特征
轴对称图形: 如果一个图形沿一条直线折叠,直线两旁的部分
能够互相重合,这个图形就叫做轴对称图形,
对称轴: 这条直线就是它的对称轴。
身边实例
你身边存在这样的例子吗
概括
两个图形关于某直线对称
对称轴
对应点
成轴对称的两个图形全等吗?
全等的两个图形一定成轴对称吗?
小组交流
深入思考
轴对称图形与两个图关于某直线对称的区别的与联系
练习提高
2.你学过的平面图形哪些是轴对称图形?它们有几条对称轴?
(引导学生回顾所学过的基本图形).
3.平面内两条相交直线是轴对称图形吗?如果是, 它有几条对称轴
1.下列图形哪些是轴对称图形 如果是请画出它们的一条对称轴.
4.如图,图形A,B成轴对称吗?如果是轴对称,请指出C,D的对应点。
C
D
A
B
A
B
C
D
A
D
B
C
通过回顾,
加深理解,
把握本质
本节课你学到了什么?
知识方面
能力方面
板书力求简洁有效勾勒出教学的主线,呈现完整知识结构体系易于帮助学生回忆本节知识。
轴对称
轴对称图形 一个图形沿一条直线折叠,直线两旁的部分能够互相重合
两个图形关于某直线对称 一个图形沿一条直线折叠,它能够与另一个图形重合
对称点 折叠后重合的点
二者区别与联系
整体
部分
对称轴 直线
谢谢大家!《12.1 认识轴对称》
教学任务分析
教学目标 知识技能 理解轴对称图形,两个图形关于某直线对称的概念。了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴,对应点的概念。了解轴对称图形与两个图形关于某直线对称的区别与联系。
数学思考 通过学习轴对称图形和两个图形关于某直线对称,进一步认识几何图形的本质。通过学习轴对称图形和两个图形关于某直线对称的区别与联系,进一步发展学生抽象概括能力。
解决问题 通过学习轴对称图形和两个图形成轴对称,让学生关注生活,学会观察,增强交流。
情感态度 通过学习,体会数学与生活的联系,激发学生学习欲望,主动参与数学学习活动。
教学重点 轴对称图形和两个图形关于某直线对称的概念。
教学难点 轴对称图形与两个图形关于某直线对称的区别与联系
教学方法 自主互助法: 充分发挥学生的主体作用,使学生在自主交流学习中实现知识的共享
分层教学法: 尊重学生的个体差异,分层教学,满足学生多样化的学习需要
教学流程安排
活动流程图 活动内容和目的
1、创设情境,感知对称2、认识轴对称图形及对称轴3、认识两个图形关于某直线对称及对称轴,对应点。4. 认识两种图形的区别和联系思考,练习,小结,作业 通过图片,感知对称,欣赏对称美,体会价值,激发学习兴趣,引入课程。
通过折叠,剪纸,观察,分析,交流,引导得出轴对称图形及对称轴的概念。
通过直观演示,学生观察,分析,交流,教师引导得出两个图形关于某直线对称及对称轴,对应点的概念。通过观察,比较,讨论,交流,进一步认识两种图形的区别和联系。通过练习,思考,归纳,总结,进一步巩固和提高。
教学过程设计
问题与情境 师 生 活 动 设计意图
活动1 创设情境展示天安门到故宫的鸟瞰图 北京城的示意图,以及其他图片 教师展示图片,学生欣赏图片,感知对称。也可展示学生自带的图片。在活动中,教师说明几何中对称有三种,轴对称是对称中重要的一种。轴对称有哪些性质?怎样画一个轴对称图形?怎样用坐标表示对称?这些都是本章要研究的内容。本节课主要研究轴对称的相关概念。在本次活动中,教师应关注学生参与数学活动是否积极,学生自带的图片是否具有代表性,审美意识和情感是否在感知对称中有所增强。 展示的图片,包含建筑物及其示意图,艺术作品,动物,联系学生生活实际,感知对称,欣赏对称美,体会价值,激发学习兴趣。通过展示学生自带的图片,让学生主动参与数学活动,感知数学与生活的密切联系。
活动2 探索研究1.把一张长方形纸片对折,剪出一个一个三角形,再打开,就剪出了等腰三角形。2.观察剪出的三角形和以上的图片,你能发现它们有什么共同的特征?联系实际,你能举出轴对称图形的实例吗?完成教科书30页练习。 教师先把一张长方形纸片对折,剪出一个一个三角形,再打开,就剪出了等腰三角形。让学生动手剪一剪。学生观察,交流,尝试描述这些图形的共同特征。教师归纳学生的描述,引导得出轴对称图形及对称轴的概念,并板书。
学生举例,处理练习。本次活动中,教师应重点关注:①学生在剪纸中是否对折;②学生在表述时是否明确“存在直线---将其折叠---互相重合”的特征。 教师演示起示范作用,学生动手剪一剪是让学生参与到活动中来,发展学生动手操作能力。通过观察,让学生主动思考,互相交流,描述特征,鼓励学生勇于发现,增强合作意识。通过举例,练习,进一步认识轴对称的本质。
活动3 探索研究1.喜字对称后以及教科书中的每对图片有什么共同的特征?2.联系实际,你能举出两个图形成轴对称的实例吗?完成教科书31页练习。3.小组交流成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗? 教师直观演示,学生观察,交流,教师引导得出两个图形关于某直线对称及对称轴,对应点的概念的概念,并板书。
学生举例,独立完成。本次活动中,教师应重点关注:1. 学生对图形的观察是否用心2.学生描述时是否明”确存在直线---将其折叠---两个图形重合”的特征。学生独立思考后,再展开讨论,教师参与学生讨论,及时指导。 问题是思维的起点,通过对图形的思考,鼓励学生勇于发现,增强合作意识。通过举例,练习,进一步认识两个图形成轴对称的本质。通过练习,进一步巩固两个图形成轴对称的对应点的概念。通过思考成轴对称的两个图形与全等之间的关系,培养学生的思维品质。
活动4.深入思考,轴对称图形和两个图形关于某直线对称有什么区别与联系?提示:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看出一个整体,它是一个轴对称图形吗? 从拼接直角三角板出发,学生观察,交流讨论,教师引导得出区别。
本次活动中,教师应重点关注:1.学生在比较区别时,是否明确轴对称图形表述的是一个具有特殊形状 的图形,两个图形成轴对称表述的是两个图形的位置关系。2.学生在思考联系时,是否运用辩证的观点认识世界,明确整体与部分的辩证关系。 通过比较观察,互相讨论,进一步认识本质特征。通过思考,讨论,进行辩证唯物主义教育,让学生用辩证的观点认识事物,进一步发展学生的抽象思维能力。
活动5. 归纳小结,分层作业。 让学生充分交流,说出自己的体会,最后师生共同归纳。教师布置作业,学生记录并课外完成。在活动中教师重点关注:学生在小结时,能否将知识系统化,条理化,是否把握本质特征? 通过回顾反思,加深理解,进一步巩固所学知识。针对学生认知的差异设计了有梯度的作业题,既使学生巩固知识,又使学有余力的学生获得最佳发展.(共28张PPT)
课程名称 12.1轴对称
教材版本 人民教育出版社
授课年级 八年级
教学设计
分析教材
说课程序
内容地位作用
教学 目 标
教法分析学法指导
学情分析
重点难点关键
板书设计
本章共三大节13课时,
本小节需3课时,
本节是第1课时。
课时安排
对比
交流
概括
总结
呈现图片
运用
教学流程
思考
展示图片,感受对称的普遍性和学习的必要性。
蝴蝶的对称是自然界的一种生物现象,感受自然与科学的联系。
民间艺人的剪纸也利用到图形的对称,由此感受数学与生活的联系。
培养学生观察,思考,交流的能力,体验成功的喜悦,真正体现学生是学习的主人 。
基本图形
规范语言
概括特征
轴对称图形:如果一个图形沿一条直线折叠, 直线两旁的部分
能够互相重合,这个图形就叫做轴对称图形,
对称轴: 这条直线就是它的对称轴。
身边实例
你身边存在这样的例子吗
概括
两个图形关于某直线对称
对称轴
对称点
成轴对称的两个图形全等吗?
全等的两个图形一定成轴对称吗?
小组交流
深入思考
轴对称图形与两个图形关于某直线对称的区别与联系?
练习提高
2.你学过的平面图形哪些是轴对称图形?它们有几条对称轴?
(引导学生回顾所学过的基本图形).
3.平面内两条相交直线是轴对称图形吗?如果是, 它有几条对称轴
1.下列图形哪些是轴对称图形 如果是请画出它们的一条对称轴.
4.如图,图形A,B成轴对称吗?如果是轴对称,请指出C,D的对应点。
A
B
B
B
A
A
C
D
C
D
C
D
通过回顾,
加深理解,
把握本质
本节课你学到了什么?
知识方面
能力方面
本节课的设计,主要依据新课标中提出的信息技术和数学课程内容的整合这一基本理念,为了实现大众数学的目标,特意安排如下: 1、通过欣赏图片,感受对称在建筑设计中以及艺术设计中的广泛应用.体会对称的美学价值和文化内涵。
2. 通过欣赏美丽的蝴蝶,感受对称使自然界中的一种生物现象以及自然与科学的联系,感受学习对称的必要性。
3、采用学生观察,自主探索与合作交流的学习方式,让学生成为学习的主体,培养了他们处理信息、交流合作、解决问题的能力。使学生更加深刻的认识到数学来源于生活,并服务于生活。 4、通过使用课件直观演示对折裁剪三角形,使学生认识到整个大三角形是轴对称图形,两个小三角形关于折线对称,对整堂课起到高屋建瓴的作用。并且使课堂教学活动变得活泼,生动有趣,富有启发性、真实性,可以从根本上改变传统上单调的教学模式,从而活跃学生的思维,激发学生的学习兴趣。
谢谢大家!
《轴对称》处于人民教育出版社出版的八年级上册第十二章第一节。
对称是人们用来理解和创造秩序,美妙以及尽善尽美的一种思想,对称原理乃是数学中最有力量和最优雅的解题方法之一。
学习对称的必要性不言而喻。
对称在建筑设计中用途很大,轴对称也是艺术家创造艺术作品的重要准则,它不仅在数学中在其他自然科学中也被广泛地应用。
知识与技能:
1. 理解相关概念。
2. 了解轴对称图形与两个图形关于某直线对称的区别与联系。
过程与方法:
1. 通过学习轴对称和两个图形关于某直线对称,进一步认识几何图形的本质。
通过学习轴对称图形与两个图形关于某直线轴对称的区别与联系,
进一步发展学生抽象概括能力。
情感与态度:通过学习,体会数学与生活的联系,
激发学生学习欲望,主动参与数学学习活动。
教学重点:轴对称图形和两个图形关于某直线对称的概念。
教学难点:轴对称图形与两个图形关于某直线对称的区别与联系 。
教学关键: 通过学习轴对称图形和两个图形关于某直线对称,
让学生学会观察,关注生活,增强交流。
在学习了全等三角形的基础上,学生已具备一定的推理与归纳能力,初步掌握了探索图形性质的基本方法 。
对于如何将实验几何与论证几何有机的结合起来还很生疏,所以本节课采用的方式从身边实例到几何图形,从具体到抽象概括总结,符合学生认知规律。
从学生的认知规律出发,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,通过折纸,观察,思考,感受数学与生活的联系。
从静止的状态和运动的过程认识轴对称,学习轴对称,采用实验观察与直观演示相结合的教学方法。
通过学生观察,思考、合作交流,从具体到抽象概括总结的学习方式,让学生成为学习的主体,培养了他们处理信息、交流合作、解决问题的能力。使学生更加深刻的认识到数学来源于生活,并服务于生活。
教法分析,学法指导
轴对称
板书力求简洁有效勾勒出教学的主线,呈现完整知识结构体系易于帮助学生回忆本节知识。
轴对称
轴对称图形
两个图形关于某直线对称
对称点
二者区别与联系
整体
部分
对称轴