第18章
《平行四边形》单元测试
.
题号
一
二
三
总分
21
22
23
24
25
26
27
28
分数
一、选择题(每题3分,共30分)
1.如图,在?
ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为( )
A.5
B.4
C.3
D.2
2.如图,在中对角线,相交于点,点,分别是,的中点,连接,若,则的长为(
)
A.10
B.8
C.6
D.4
1题图
2题图
5题图
3.在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是(
)
A.测量对角线是否互相平分
B.测量两组对边是否分别相等
C.测量一组对角是否为直角
D.测量两组对边是否相等,再测量对角线是否相等
4.下列命题中,为假命题的是(
)
A.两组邻边分别相等的四边形是菱形
B.对角线互相垂直平分的四边形是菱形
C.四个角相等的四边形是矩形
D.对角线相等的平行四边形是矩形
5.如图,M是菱形ABCD的边AB中点,MO=5cm,则菱形ABCD的周长为(
)
A.5
cm
B.10
cm
C.20
cm
D.40
cm
6.如图,边长分别为和的两个正方形和并排放在一起,连结并延长交于点,交于点,则
A.
B.2
C.2
D.1
7.在一次数学课上,张老师出示了一个题目:“如图,?ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:
小青:OE=OF;小何:四边形DFBE是正方形;
小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,
这四位同学写出的结论中不正确的是( )
A.小青
B.小何
C.小夏
D.小雨
8.
如图,在菱形OBCD中,OB=1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90°,得到菱形OB′C′D′,则点C′的坐标为( )
A.(,)
B.(,-)
C.(,-)
D.(,)
9.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE:EC=2:1,则线段CH的长是(
)
A.3
B.4
C.5
D.6
10.如图,正方形中,对角线交于点,折叠正方形纸片,使落在上,点恰好与上的点重合,展开后折痕分别交于点,连给出下列结论,其中正确的个数有( )
①;②;③四边形是菱形;④.
A.1个
B.2个
C.3个
D.4个
二、填空题(每题3分,共30分)
11.如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,
AB=5cm,EC=2cm则BC=_________cm.
12.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=_____.
11题图
12题图
13题图
13.如图,平行四边形OABC(两组对边分别平行且相等)的顶点A,C的坐标分别为(5,0),(2,3),则顶点B的坐标为_______.
14.在Rt△ABC中,∠C=90°,BC=6,AC=8,则斜边上的中线长为________。
15.如图,在?ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF与CE交于点Q,若S△APD=20cm2,S△BQC=30cm2,则图中阴影部分的面积为____cm2.
16.如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF的长为_____.
15题图
16题图
17题图
17.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE长是
.
18.如图,在四边形ABCD中,∠ADC=900,∠BAD=600,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE,EF,DF,则DF的长为
.
19.如图,已知菱形的对角线交于点为的中点,若,则菱形的周长为_____.
8题图
19题图
20题图
20.如图,正方形纸片ABCD边长为6,点E,F分别是AB,CD的中点,点G,H分别在AD,AB上,将纸片沿直线GH对折,当顶点A与线段EF的三等分点重合时,AH的长为_____.
三、解答题(每题10分共60分)
21.如图所示中,EF分别是边AD,BC上的点,且.
(1)求证:;
(2)连结AF,若,,求的度数.
22.已知?ABCD中,E,F分别是边AB,CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
23.
如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
24.
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.
25.
如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.
26.如图,已知△ABC中,AB=AC,D为△ABC所在平面内的一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB于点E、F.
(1)如图1,当点D在线段BC上时,通过观察分析线段DE、DF、AB之间的数量关系,并说明理由;
(2)如图2,当点D在直线BC上,其它条件不变时,试猜想线段DE、DF、AB之间的数量关系(请直接写出等式,不需证明);
(3)如图3,当点D是△ABC内一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB和直线BC于E、F和G.试猜想线段DE、DF、DG与AB之间的数量关系(请直接写出等式,不需证明).
答案
一、选择题
1.D
2.B
3.D
4.A
5.D
6.B
7.B
8.B
9.B
10.A.
二、填空题
11.3.
12.2
13.(7,3).
14.5
15.50
16.
.
17.答案为:6.5.
18.答案为:;
19.24
20.或
三、解答题
21.(1)在平行四边形ABCD中,,,
∵,
∴,
∴四边形BEDF是平行四边形
∴
(2)∵,
∴
∵
∴
22.(1)在平行四边形ABCD中,AB=CD,AB∥CD.
∵E、F是AB、CD中点,
∴BE=AB,DF=CD.
∴BE=CF.
∵EB∥DF,
∴四边形EBFD是平行四边形;
(2)∵AD=AE,∠A=60°,
∴△ADE是等边三角形.
∴DE=AD=2,
又∵BE=AE=2,
由(1)知四边形EBFD是平行四边形,
∴四边形EBFD的周长=2(BE+DE)=8.
23.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,
∴∠DAF+∠BAF=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠ABE=∠DAF,
∵在△ABE和△DAF中,
,
∴△ABE≌△DAF(ASA),
∴AF=BE;
(2)解:MP与NQ相等.
理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,
由(1)可知MP=NQ.
24.
(1)证明:∵在△ABC和△ADC中,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
∵在△ABF和△ADF中,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵∠AFB=∠CFE,
∴∠AFD=∠CFE,
∴∠BAC=∠DAC,∠AFD=∠CFE.
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
又∵∠BAC=∠DAC,
∴∠CAD=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形;
(3)当EB⊥CD时,∠EFD=∠BCD,
理由:∵四边形ABCD为菱形,
∴BC=CD,∠BCF=∠DCF,
在△BCF和△DCF中,
∴△BCF≌△DCF(SAS),
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠EFD=∠BCD.
25.
(1)证明:∵AD∥BC,CE=AD,
∴四边形ACED是平行四边形,
∴AC=DE,
∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,
∴AC=BD,
∴BD=DE.
(2)解:过点D作DF⊥BC于点F,
∵四边形ACED是平行四边形,
∴CE=AD=3,AC∥DE,
∵AC⊥BD,
∴BD⊥DE,
∵BD=DE,
∴S△BDE=BD?DE=BD2=BE?DF=(BC+CE)?DF=(BC+AD)?DF=S梯形ABCD=16,
∴BD=4,
∴BE=BD=8,
∴DF=BF=EF=BE=4,
∴CF=EF-CE=1,
∴AB=CD==.
26.【解答】解:(1)DE+DF=AB.理由如下:
如图1.∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∴DE=AF.
∵DF∥AC,∴∠FDB=∠C,∵AB=AC,∴∠C=∠B,∴∠FDB=∠B,
∴DF=FB,∴DE+DF=AF+FB=AB;
(2)当点D在直线BC上时,分三种情况:
①当点D在CB延长线上时,如图2①,AB=DE﹣DF;
②当点D在线段BC上时,如图1,AB=DE+DF;
③当点D在BC的延长线上时,如图2②,AB=DF﹣DE;
(3)如图3,AB=DE+DG+DF.