第二十五章达标测试卷
(时间:120分钟 分数:120分)
得分:______________
一、选择题(每小题3分,共30分)
1.下列事件为必然事件的是(
)
A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球
B.三角形的内角和为180°
C.打开电视机,任选一个频道,屏幕上正在播放广告
D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上
2.关于频率与概率有下列几种说法,其中正确的是(
)
①“明天下雨的概率是90%表示明天下雨的可能性很大”;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近.
A.①④ B.②③ C.②④ D.①③
3.时代中学周末有40人去体育场看足球比赛,40张票分别为B区第2排1号到40号.分票采用随机抽取的办法,小明第一个抽取,他抽取的座位号为10号,接着小亮从其余的票中任意抽取一张,取得的一张恰与小明邻座的概率是(
)
A.
B.
C.
D.
4.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为(
)
A.28
B.24
C.26
D.30
5.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.从箱子里任意摸出1个球,摸到白球的概率是(
)
A.1
B.
C.
D.
6.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是(
)
A.
B.
C.
D.1
7.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是(
)
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
8.如图,A,B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是(
)
A.
B.
C.
D.
9.)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是(
)
A.红红不是胜就是输,所以红红胜的概率为
B.红红胜或娜娜胜的概率相等
C.两人出相同手势的概率为
D.娜娜胜的概率和两人出相同手势的概率一样
10.甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是(
)
A.
B.
C.
D.
二、填空题(每小题3分,共24分)
11.某同学期中考试数学考了120分,则他期末考试数学考120分是________事件.(填“必然”“不可能”或“随机”)
12.分别写有数字、、-1、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是________.
13.一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是________.
14.扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:
抽取的毛绒玩具数n
20
50
100
200
500
1000
1500
2000
优等品的频数m
19
47
91
184
462
921
1379
1846
优等品的频率
0.950
0.940
0.910
0.920
0.924
0.921
0.919
0.923
从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是________.(精确到0.01)
15.(同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是________.
16.一个小球在如图所示的方格地板上自由滚动,并随机停留在某地板上,每块地板大小、质地完全相同,那么该小球停留在阴影区域的概率是________.
17.在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是________.
18.取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽取1张,记卡片上的数字为m,则数字m使分式方程-1=无解的概率为________.
三、解答题(共66分)
19.(9分)在一个不透明的袋子中,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀.现有一个事件:从口袋中任意摸出n个球,在这n个球中,红球、白球、黑球至少各有一个.
(1)当n为何值时,这个事件必然发生?
(2)当n为何值时,这个事件不可能发生?
(3)当n为何值时,这个事件可能发生?
20.(8分)一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于,问至少取出了多少个黑球?
21.(8分)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)写出所有个位数字是5的“两位递增数”;
(2)请用列表法或树状图法,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.
22.(9分))现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.
(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率;
(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.
23.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有“求助”可以用.(使用“求助”一次可以让主持人去掉其中一题的一个错误选项)
(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;
(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;
(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.
24.(10分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.
(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是________;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.
25.(12分)现有一项资助贫困生的公益活动由你来主持,每位参与者需交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘,每个转盘分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各指向一个数字(若指针在分格线上,则重转一次,直到指针指向某一数字为止).若指针最后所指的数字之和为12,则获一等奖,奖金20元;数字之和为9,则获二等奖,奖金10元;数字之和为7,则获三等奖,奖金5元;其余的均不得奖.此次活动所募集到的赞助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活.
(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;
(2)若此项活动有2000人参加,活动结束后至少有多少赞助费用于资助贫困生.
参考答案
得分:______________
一、选择题(每小题3分,共30分)
1.下列事件为必然事件的是(B)
A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球
B.三角形的内角和为180°
C.打开电视机,任选一个频道,屏幕上正在播放广告
D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上
2.关于频率与概率有下列几种说法,其中正确的是(A)
①“明天下雨的概率是90%表示明天下雨的可能性很大”;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近.
A.①④ B.②③ C.②④ D.①③
3.时代中学周末有40人去体育场看足球比赛,40张票分别为B区第2排1号到40号.分票采用随机抽取的办法,小明第一个抽取,他抽取的座位号为10号,接着小亮从其余的票中任意抽取一张,取得的一张恰与小明邻座的概率是(D)
A.
B.
C.
D.
4.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为(D)
A.28
B.24
C.26
D.30
5.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.从箱子里任意摸出1个球,摸到白球的概率是(C)
A.1
B.
C.
D.
6.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是(B)
A.
B.
C.
D.1
7.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是(D)
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
8.如图,A,B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是(A)
A.
B.
C.
D.
9.)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是(A)
A.红红不是胜就是输,所以红红胜的概率为
B.红红胜或娜娜胜的概率相等
C.两人出相同手势的概率为
D.娜娜胜的概率和两人出相同手势的概率一样
10.甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是(C)
A.
B.
C.
D.
三、解答题(共66分)
19.(9分)在一个不透明的袋子中,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀.现有一个事件:从口袋中任意摸出n个球,在这n个球中,红球、白球、黑球至少各有一个.
(1)当n为何值时,这个事件必然发生?
(2)当n为何值时,这个事件不可能发生?
(3)当n为何值时,这个事件可能发生?
解:(1)n=7或8或9;
(2)n=1或2;
(3)n=3或4或5或6.
20.(8分)一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于,问至少取出了多少个黑球?
解:(1)摸出一个球是黄球的概率为:P==;
(2)设取出x个黑球,由题意,得≥,解得x≥,∴x的最小正整数为9.即至少取出了9个黑球.
21.(8分)若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)写出所有个位数字是5的“两位递增数”;
(2)请用列表法或树状图法,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.
解:(1)根据题意,所有个位数字是5的“两位递增数”是15,25,35,45这4个;
(2)画树状图为:
共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率:P==.
22.(9分))现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.
(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率;
(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.
解:(1)随机的取一张卡片,抽取的卡片上的数字为负数的概率为:P==;
(2)画树状图如图所示:
共有16个可能的结果,点A在直线y=2x上的结果有2个,则所求事件的概率为P==.
23.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有“求助”可以用.(使用“求助”一次可以让主持人去掉其中一题的一个错误选项)
(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;
(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;
(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.
解:(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项,树状图如图所示:共有6种等可能的结果,锐锐顺利通关的结果只有1种.∴P(锐锐顺利通关)=.
24.(10分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.
(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是________;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.
解:(2)游戏不公平,理由如下:列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即(A,C)(C,A),∴P==≠,∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.
25.(12分)现有一项资助贫困生的公益活动由你来主持,每位参与者需交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘,每个转盘分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各指向一个数字(若指针在分格线上,则重转一次,直到指针指向某一数字为止).若指针最后所指的数字之和为12,则获一等奖,奖金20元;数字之和为9,则获二等奖,奖金10元;数字之和为7,则获三等奖,奖金5元;其余的均不得奖.此次活动所募集到的赞助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活.
(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;
(2)若此项活动有2000人参加,活动结束后至少有多少赞助费用于资助贫困生.
解:(1)列表略.P(一等奖)=;P(二等奖)=;P(三等奖)=;
(2)(×20+×10+×5)×2000=5000(元),5×2000-5000=5000(元),即活动结束后至少有5000元用于资助贫困生.