19.1.3 三角形的中位线 西城区同步测试(含答案)

文档属性

名称 19.1.3 三角形的中位线 西城区同步测试(含答案)
格式 zip
文件大小 36.4KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2011-05-20 12:32:33

图片预览

文档简介

测试6 三角形的中位线
学习要求
理解三角形的中位线的概念,掌握三角形的中位线定理.
课堂学习检测
一、填空题:
1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.
(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________
________________________.
2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、
△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.
3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.
二、解答题
4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.
( http: / / )
5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.
求证:四边形DEFG是平行四边形.
综合、运用、诊断
6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.
( http: / / )
7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.
8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.
求证:∠AHF=∠BGF.
( http: / / )
拓展、探究、思考
9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.
10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗 为什么
( http: / / )
参考答案
1.(1)中点的线段;(2)平行于三角形的,第三边的一半.
2.16,64×()n-1 . 3.18.
4.提示:可连结BD(或AC).
5.略. http://
6.连结BE,CE AB□ABECBF=FC.□ABCDAO=OC,∴AB=2OF.
7.提示:取BE的中点P,证明四边形EFPC是平行四边形.
8.提示:连结AC,取AC的中点M,再分别连结ME、MF,可得EM=FM.
9.ED=1,提示:延长BE,交AC于F点.
10.提示:AP=AQ,取BC的中点H,连接MH,NH.证明△MHN是等腰三角形,进而证明∠APQ=∠AQP.