东营市胜利第三十九中学2019-2020学年高中物理鲁科版选修3-3:4.2气体的实验定律的微观解释 同步练习(含解析)

文档属性

名称 东营市胜利第三十九中学2019-2020学年高中物理鲁科版选修3-3:4.2气体的实验定律的微观解释 同步练习(含解析)
格式 zip
文件大小 96.8KB
资源类型 教案
版本资源 鲁科版
科目 物理
更新时间 2020-07-03 16:37:47

图片预览

文档简介

4.2气体的实验定律的微观解释
同步练习(含解析)
1.一定质量的气体,在体积不变的情况下,温度升高,压强增大的原因中,错误的是(  )
A.温度升高后,气体分子的平均速率变大
B.温度升高后,气体分子的平均动能变大
C.温度升高后,分子撞击器壁的平均作用力增大
D.温度升高后,单位体积内的分子数增多,撞击到单位面积器壁上的分子数增多了
2.有关理想气体的压强,下列说法正确的是(  )
A.气体分子的平均速率增大,则气体的压强可能增大
B.气体分子的密集程度增大,则气体的压强一定增大
C.气体分子的平均动能减小,则气体的压强一定减小
D.气体分子的内能减小,则气体的压强一定减小
3.某密闭钢瓶中有一定质量的理想气体,在温度T1、T2时,各速率区间的分子数占总分子数的百分比随气体分子速率的变化图像分别如图中两条曲线所示。则下列说法正确的是(  )
A.温度T1大于温度T2
B.图中两条曲线下面积不相等
C.同一温度下,气体分子的速率都呈“中间多、两头少”的分布
D.钢瓶中的理想气体的温度从T1变化到T2过程中,气体压强变小
4.关于气体压强的理解,哪一种理解是错误的(  )
A.将原先敞口的开口瓶密闭后,由于瓶内气体重力太小,它的压强将远小于外界大气压强
B.气体压强是由于气体分子不断撞击器壁而产生的
C.气体压强取决于单位体积内气体分子数及其平均动能
D.单位面积器壁受到气体分子碰撞产生的平均压力在数值上等于气体压强的大小
5.下面关于气体压强的说法正确的是(
)
①气体对器壁产生的压强是由于大量气体分子频繁碰撞器壁而产生的
②气体对器壁产生的压强等于作用在器壁单位面积上的平均作用力
③从微观角度看,气体压强的大小跟气体分子的平均动能和分子密集程度有关
④从宏观角度看,气体压强的大小跟气体的温度和体积有关
A.只有①③对
B.只有②④对
C.只有①②③对
D.①②③④都对
6.下列说法正确的是(  )
A.布朗运动不是液体分子的运动,但它是固体分子的运动
B.让两个相距很远的分子在恒定的外力作用下靠到最近时,分子势能先减小后增大。分子力先增大后减小
C.温度升高分子热运动加剧,分子运动的平均动能增大,所以只要空间分子密度相同时温度高的压强大
D.一定量的的水变成的水蒸气,其分子平均动能增加,但内能不变
7.某种气体在不同温度下的气体分子速率分布曲线如图所示,图中f(v)表示v处单位速率区间内的分子数百分率,所对应的温度分别为,则
A.
B.
C.
D.
8.一定质量的理想气体被封闭在容器中,其p-V图如图所示,气体状态从A→B→C→D→A完成一次循环,A→B和C→D为等温过程,温度分别为T1和T2。D→A为等压过程,B→C为等容过程。下列判断正确的是(  )
A.T1>T2
B.气体分子的平均速率vA
=
vB
<
vC
=
vD
C.从微观角度讲B→C过程压强降低是由于分子的密集程度减少引起的
D.气体分子在单位时间内对器壁单位面积碰撞的次数ND>NA>NB>NC
9.氧气分子在0
℃和100
℃温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图中两条曲线所示.下列说法正确的是________。
A.图中两条曲线下面积相等
B.图中虚线对应于氧气分子平均动能较小的情形
C.图中实线对应于氧气分子在100
℃时的情形
D.图中曲线给出了任意速率区间的氧气分子数目
E.与0
℃时相比,100
℃时氧气分子速率出现在0~400
m/s区间内的分子数占总分子数的百分比较大
10.一定质量的理想气体经历等温压缩过程时,气体压强增大,从分子运动理论观点来分析,这是因为( 
)
A.气体分子的平均动能不变
B.气体的分子数密度增大
C.单位时间内,器壁单位面积上分子碰撞的次数增多
D.气体分子数增加
11.封闭在汽缸内一定质量的理想气体,如果保持气体体积不变,当温度升高时,气体的密度________(选填“增大”、“减小”或“不变”),气体的压强________(选填“增大”、“减小”或“不变”),气体分子的平均动能________(选填“增大”、“减小”或“不变”),每秒撞击单位面积器壁的气体分子数________(选填“增加”、“减少”或“不变”)。
12.某气体在两种不同温度下的分子速率分布图像如图所示,纵坐标f(v)表示各速率区间的分子数占总分子数的百分比,横坐标v表示分子的速率.可见________(选填“大于”或“小于”),温度升高,分子的平均速率___________,(选填“增大”或“减小”).
13.气体的压强是由于组成气体的________向各个方向运动,撞击器壁而产生的;对此,我们可以通过小钢球自由落下不断撞击托盘后弹出,并使磅秤上有一持续示数的实验(如图)来进行________(选填“观察”“类比”“分析”或“综合”).
14.电子真空管抽气到最后阶段时,还应将灯丝加热后再抽气。原因是灯丝表面均匀吸附着单层密排的气体分子,灯丝受热后,这层气体分子便释放出来。设灯丝是由半径、长的铂丝制成,每个气体分子的截面积,真空管容积,当灯丝加热至100℃时,灯丝吸附的气体分子全部逸出到真空管内。已知大气压,阿伏加德罗常数,则加热前吸附在灯丝上的气体分子数约为________个,如果这些气体分子被加热后离开灯丝而不抽出电子真空管,则此时电子真空管内的压强为________Pa(保留2位有效数字)。
参考答案
1.D
【解析】
AB.温度升高后,分子的平均动能增加,根据知气体分子的平均速率变大,故AB正确,不符合题意;
C.温度升高后,分子的平均动能增加,分子撞击器壁的平均作用力增大,故C正确,不符合题意;
D.体积不变,分子的密集程度不变,单位体积内的分子数不变,撞到单位面积器壁的分子数不变,故D错误,符合题意;
故选D.
【点睛】
影响气体压强的微观因素:一个是气体分子的平均动能,一个是分子的密集程度,温度是分子平均动能的标志,温度越高,分子的平均动能越大.
2.A
【解析】
A.从微观角度讲,决定气体压强大小的因素:气体分子的数密度、平均动能;气体分子的平均速率增大,分子数密度可能减小,故气体的压强可能增大,故A正确;
B.气体分子的密集程度增大,分子热运动的平均动能可能减小,故气体的压强不一定增大,故B错误;
C.气体分子的平均动能增大,分子数密度可能减小,故气体的压强不一定减小,故C错误;
D.如果该气体分子经过等压冷却过程,此时气体分子的内能减小,气体压强却保持不变,故D错误。
故选A。
3.C
【解析】
A.由图可知,T2中速率大的分子占据的比例较大,则说明T2对应的平均动能较大,所以T2对应的温度较高,即T1
<
T2,故A错误;
B.根据定义,单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化曲线下的面积为1,所以两条曲线下面积相等,故B错误;
C.同一温度下,气体分子的速率呈现“中间多、两头少”的分布规律,故C正确;
D.密闭在钢瓶中的理想气体体积不变,温度从T1变化到T2过程中,即温度升高,则分子平均动能增大,气体压强增大,故D错误。
故选C。
4.A
【解析】
A.将开口瓶密闭后,瓶内气体脱离大气,瓶内气体压强等于外界大气压强,故A错误符合题意;
B.气体压强是由于气体分子不断撞击器壁而产生的,故B正确不符合题意;
C.根据气体压强的微观解释可知,气体压强取决于单位体积内气体分子数及其平均动能,故C正确不符合题意;
D.根据可知,单位面积器壁受到气体分子碰撞产生的平均压力在数值上等于气体压强的大小,故D正确不符合题意。
故选A。
5.D
【解析】
气体压强的产生机理是:由于大量的气体分子频繁的持续的碰撞器壁而对器壁产生了持续的压力,单位时间内作用在器壁单位面积上的平均作用力的大小在数值上等于气体压强。由此可知,从微观的角度看,气体分子的平均速率越大,单位体积内的气体分子数越多,气体对器壁的压强就越大,即气体压强的大小与气体分子的平均动能和分子的密集程度有关;从宏观的角度看,温度越高,分子的平均速率越大,分子的平均动能越大,体积越小,单位时间内的气体分子数越多,分子对器壁的碰撞越频繁,气体对器壁的压强就越大,否则压强就越小,故①②③④都正确。故选D。
6.C
【解析】
A.布朗运动是指悬浮在液体或气体中的固体微粒所做的永不停息的无规则运动,故A错误;
B.两个相距很远的分子不断靠近时,一开始分子间作用力表现为分子间引力,先增大后减小,距离足够近时表现为分子间斥力,不断增大,所以分子势能先减小后增大,故B错误;
C.温度升高,分子热运动加剧,分子运动更加剧烈,分子运动平均动能增大,分子间碰撞频率增大,同时分子碰撞器壁的运动加强,即分子对器壁的平均撞击力增大,由
可知,压强增大,因此分子密度相同时温度越高压强越大,故C正确;
D.一定量的的水变成的水蒸气,温度不变,所以其分子平均动能不变,但内能增加,故D错误。
故选C。
7.B
【解析】
因为对于给定的气体,当温度升高,分子热运动加剧,速率较大的分子所占百分比增高,分布曲线的峰值向速率大的方向移动即向高速区扩展,峰值变低,曲线变宽,变平坦,故B正确.
8.AD
【解析】
A.由图示图像可知,D→A过程为等压过程,气体体积变大,由盖吕萨克定律可知,气体温度升高,即A点的温度高于D点的温度,则
故A正确;
B.B→C为等容过程且压强减小,由可知,温度降低,即C的温度比B的温度低,根据温度越高分子平均动能越大即平均速率也越大,则有
故B错误;
C.从B→C过程,气体体积不变,压强减小,由查理定律可知,气体的温度T降低,分子的平均动能减小,由于气体体积不变,分子数密度不变,单位时间内撞击器壁的分子数不变,分子平均动能减小,分子撞击器壁的作用力变小,气体压强减小,故C错误;
D.由图可知

则每个分子与器壁的撞击力
由公式可知
故D正确。
故选AD。
9.ABC
【解析】
A.
由题图可知,在0℃和100℃两种不同情况下各速率区间的分子数占总分子数的百分比与分子速率间的关系图线与横轴所围面积都应该等于1,即相等;故A项符合题意.
B温度是分子平均动能的标志,温度越高,分子的平均动能越大,虚线为氧气分子在0
℃时的情形,分子平均动能较小,则B项符合题意.
C.
实线对应的最大比例的速率区间内分子动能大,说明实验对应的温度大,故为100℃时的情形,故C项符合题意.
D.
图中曲线给出了任意速率区间的氧气分子占据的比例,但无法确定分子具体数目;故D项不合题意
E.由图可知,0~400
m/s段内,100℃对应的占据的比例均小于与0℃时所占据的比值,因此100℃时氧气分子速率出现在0~400m/s区间内的分子数占总分子数的百分比较小;则E项不合题意.
10.ABC
【解析】
A.气体经历等温压缩,温度是分子热运动平均动能的标志,温度不变,分子热运动平均动能不变;故气体分子每次碰撞器壁的冲力不变,故A错误;
BC.由玻意耳定律可知气体的体积减小,分子数密度增加,故单位时间内单位面积器壁上受到气体分子碰撞的次数增多,故BC正确;
D.气体的体积减小,分子数密度增加,但分子总数是一定的,故D错误;
故选ABC.
11.不变
增大
增大
增加
【解析】
[1]一定质量的气体,如果保持气体体积不变,由密度公式可知气体密度不变;
[2]由理想气体气体状态方程可知,如果保持气体体积不变,当温度升高时,气体的压强增大;
[3][4]温度是气体分子平均动能变化的标志,当温度升高时,气体分子的平均动能增大,每秒撞击单位面积器壁的气体分子数增加。
12.小于
增加
【解析】
[1]气体的分子的运动的统计规律:中间多,两头少;温度高,最可几速率向速度较大的方向移动;
故;
[2]温度升高,分子热运动的平均动能增加,故平均速率增加.
【点睛】
温度是分子热运动平均动能的标志;气体的分子的运动的统计规律:中间多,两头少;即大多数的分子的速率是比较接近的,但不是说速率大的和速率小的就没有了,也是同时存在的,但是分子的个数要少很多.
13.
分子
类比
【解析】
气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力;类比的思想,用台秤示数类比气体压力,是抽象问题形象化;
点睛:气体压强的产生:大量做无规则热运动的分子对器壁频繁、持续地碰撞产生了气体的压强.单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力.所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力.
14.
【解析】
[1]加热前吸附在灯丝上的气体分子数约
[2]气体的物质的量
根据克拉珀龙方程