四川省夹江中学2019-2020学年高中物理教科版选修3-4:1.2单摆 达标作业(含解析)

文档属性

名称 四川省夹江中学2019-2020学年高中物理教科版选修3-4:1.2单摆 达标作业(含解析)
格式 zip
文件大小 154.2KB
资源类型 教案
版本资源 教科版
科目 物理
更新时间 2020-07-07 12:38:07

图片预览

文档简介

1.2单摆
1.关于物理学中的贡献,下列说法正确的是(

A.奥斯特最先发现电流的磁效应且首先制造出最原始的发电机
B.法拉第通过大量的实验研究发现电磁感应现象且首先制造出最原始的发电机
C.惠更斯发现单摆具有等时性,他由此制造出第一台摆钟
D.伽利略发现单摆具有等时性,他由此制造出第一台摆钟
2.下列说法正确的是(

A.同一单摆,在月球表面做简谐振动的周期小于在地球表面做简谐振动的周期
B.简谐运动的平衡位置是指速度为0的位置
C.简谐运动的频率越高,振动质点的速度越大
D.做简谐运动的质点在半个周期内经过的路程一定为振幅的2倍
3.(改编)一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的,则单摆的(

A.频率不变,振幅不变
B.频率不变,振幅改变
C.频率改变,振幅不变
D.频率改变,振幅改变
4.将秒摆(周期为2s)的周期变为1s,下列措施可行的是(

A.将摆球的质量减半
B.摆长减为原来的
C.摆长减半
D.振幅减半
5.如图甲所示是演示简谐运动图象的装置,当漏斗下面的薄木板N被匀速地拉出时,振动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO1代表时间轴,图乙中是两个摆中的沙在各自板上形成的曲线,若板N1和板N2拉动的速度v1和v2的关系为v2=2v1,则板N1、N2上曲线所代表的周期T1和T2的关系为(
)
A.T2=T1
B.T2=2T1
C.T2=4T1
D.T2=T1
6.关于单摆,下列说法正确的是
A.物体能被看作单摆的条件是摆动时摆角要小于5°
B.振动的频率与振幅无关
C.细线拉力与重力的合力提供回复力
D.摆动到最低点时摆球合力为零
7.甲、乙两个单摆的振动图象如图所示,根据振动图象可以断定
A.甲、乙两单摆振动的周期之比是3:2
B.甲、乙两单摆振动的频率之比是2:3
C.若甲、乙两单摆在同一地点摆动,则甲、乙两单摆摆长之比是9:4
D.若甲、乙两单摆摆长相同,在不同地点摆动,则甲、乙两单摆所在地的重力加速度之比为9:4
8.如图所示,一单摆在做简谐运动,下列说法正确的是
A.单摆的幅度越大,振动周期越大
B.摆球质量越大,振动周期越大
C.若将摆线变短,振动周期将变大
D.若将单摆拿到月球上去,振动周期将变大
9.一单摆做小角度摆动,其振动图象如图,以下说法正确的是
A.时刻摆球速度最大,悬线对它的拉力最小
B.时刻摆球速度为零,悬线对它的拉力最小
C.时刻摆球速度为零,悬线对它的拉力最小
D.时刻摆球速度最大,悬线对它的拉力最大
10.下图为同一实验中甲、乙两个单摆的振动图象,从图象可知
A.两摆球的质量相等
B.两单摆的振幅相等
C.两单摆相位相差/2
D.两单摆的摆长相等
11.将一劲度系数为k的轻质弹簧竖直悬挂,下端系上质量为m的物块.将物块向下拉离平衡位置后松开,物块上下做简谐运动,其振动周期恰好等于以物块平衡时弹簧的伸长量为摆长的单摆周期.请由单摆的周期公式推算出该物块做简谐运动的周期T.
12.我们通常把周期为秒的单摆称为“秒摆”,请你计算秒摆的摆长是多少?根据你所学过的物理知识,证明秒摆在竖直平面内小幅度摆动时做简谐运动.
13.简谐运动是一种周期性运动,其周期与振动物体的质量的平方根成正比,与振动系统的振动系数的平方根成反比,而与振幅无关,即:.
试论证分析如下问题:
()如图甲,摆长为、摆球质量为的单摆在间做小角度的自由摆动,当地重力加速度为.
a.当摆球运动到点时,摆角为,画出摆球受力的示意图,并写出此时刻摆球受到的回复
大小;
b.请结合简谐运动的特点,证明单摆在小角度摆动时周期为.
(提示:用弧度制表示角度,当角很小时,,角对应的弧长与它所对的弦长也近似相等)
图甲
图乙
图丙
()类比法、等效法等都是研究和学习物理过程中常用的重要方法.长为的轻质绝缘细线下端系着一个带电量为,质量为的小球.将该装置处于场强大小为的竖直向下的匀强电场中,如图乙所示;将该装置处于磁感应强度大小为,方向垂直于纸面向里的匀强磁场中,如图丙所示.带电小球在乙、丙图中均做小角度的简谐运动.请分析求出带电小球在乙、丙两图中振动的周期.
参考答案
1.B
【解析】
奥斯特最先发现电流的磁效应,法拉第首先制造出最原始的发电机,故A错误;法拉第通过大量的实验研究发现电磁感应现象且首先制造出最原始的发电机,故B正确;伽利略最先发现单摆做微小摆动的等时性,惠更斯利用其等时性制作了摆钟,故CD错误.
2.D
【解析】
A.根据可知,因月球表面的重力加速度小于地球表面的重力加速度,可知同一单摆,在月球表面做简谐振动的周期大于在地球表面做简谐振动的周期,选项A错误;
B.简谐运动的平衡位置是指速度最大的位置,选项B错误;
C.简谐运动的频率与振动质点的速度无关,选项C错误;
D.做简谐运动的质点在半个周期内经过的路程一定为振幅的2倍,选项D正确。
3.B
【解析】
CD.决定单摆周期的是摆长及当地重力加速度,即,单摆的周期与质量无关,与单摆的运动速度也无关.当然,频率也与质量和速度无关,故C错误,D错误;
AB.决定振幅的是外来因素.反映在单摆的运动中,可以从能量去观察,从上面分析我们知道,在平衡位置(即最低点)时的动能,当m增为原来的4倍,速度减为原来的时,动能不变,最高点的重力势能也不变.但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能不变,m大了,h就一定变小了,也就是说,振幅减小了.故A错误,B正确.
4.B
【解析】
秒摆的周期由2s变为1s,周期变为原来的,由单摆周期公式T=2π可知:
A.单摆的周期与摆球质量无关,将摆球的质量减半,周期不变,故A错误;
B.将摆长减为原来的,周期变为原来的倍,即秒摆(周期为2s)的周期变为1s,故B正确;
C.将摆长减半,周期变为原来的倍,即周期变为s,故C错误;
D.单摆的周期与振幅无关,振幅减半,单摆周期不变,故D错误。
5.D
【解析】
在木板上由摆动着的漏斗中漏出的沙形成的曲线显示出摆的位移随时间变化的规律,即沙摆的振动图象.由于拉动木板的速度不同,所以N1、N2上两条曲线的时间轴的(横轴)单位长度代表的时间不等.如果确定了N1、N2上两条曲线的时间轴的单位长度与时间的对应关系后,就可以确定各条曲线代表的沙摆完成一次全振动所需的时间,即振动周期,从而可以确定T1、T2的关系.
【详解】
由图可见,薄板被匀速拉出的距离相同,且v2=2v1,则木板N1上时间轴单位长度代表的时间t1是木板N2上时间轴单位长度代表的时间t2的两倍,即t1=2t2.由图线可知,T1=t1,T2=t2,因而得出
,故D正确,ABC错误.故选D.
6.B
【解析】
A.
物体能被看作简谐运动的条件是摆动时摆角要小于5°,选项A错误;
B.
振动的频率与振幅无关,只于摆长有关,选项B正确;
C.
单摆做简谐运动的回复力由重力沿摆球运动轨迹切向的分力提供,故C错误。
D.摆球在摆动到最低点处,小球处于超重状态,摆线弹力最大,合力不为零,摆球受到的合外力提供向心力,但回复力为零,故D错误。
7.D
【解析】
A.根据图象可知,甲和乙的周期之比为:T甲:T乙=2:3.故A项不符合题意;
B.因为,所以甲乙的频率之比为f甲:f乙=3:2,故B项不符合题意;
CD.根据单摆的周期公式可知,同一地点,重力加速度相同,则甲乙的摆长之比和周期的平方成正比,即为4:9,故C项不符合题意;摆长相同,重力加速度和周期的平方成反比,即甲乙两单摆所在地的重力加速度之比为9:4,故D项符合题意.
8.D
【解析】
单摆的与幅度和质量无关,AB错误;摆线变短,则L减小,故周期减小,C错误;若将单摆拿到月球上去,重力加速度g减小,故T增大,D正确.
9.CD
【解析】
试题分析:单摆做小角度摆动时符合简谐运动的特点,t1时刻摆球在位移最大处,回复力最大,加速度最大,速度为零,所以A项错误;t2时刻摆球的位移为零,回复力为零,加速度为零,速度达到最大,所以B项错误;t3时刻摆球在位移最大处,速度为零,向心力为零,对小球受力分析,重力的切向分力提供回复力,悬线的拉力等于重力的径向分力,此时拉力最小,所以C项正确;t4时刻摆球位移为零,回复力为零,加速度为零,速度最大,向心力最大,摆球运动到悬点的正下方,悬线的拉力减去竖直向下的重力的合力提供向心力,悬线拉力最大,所以D项正确.
考点:本题考查了单摆的简谐运动的特点
10.CD
【解析】
AD.从单摆的位移时间图象可以看出两个单摆的周期相等,根据周期公式
可知,两个单摆的摆长相等,周期与摆球的质量无关,故A错误,D正确;
B.由图可知,甲、乙两个单摆的振幅分别是4cm、2cm,所以两单摆的振幅不相等,故B错误;
C.
从图象可以看出,t=0时刻,甲到达了正向最大位移处而乙才开始从平衡位置向正向的最大位移处运动,所以两单摆相位相差为,故C正确。
11.T=2π
【解析】单摆周期公式T=2π,且kl=mg
解得T=2π
点睛:本题关键是根据单摆的周期公式T=2π和共点力平衡条件列式求解,基础问题.
12.1m,见解析
【解析】
周期为2s;由单摆的周期公式T=2π可得:;
单摆在振动中重力沿切向的分力是单摆简谐运动的回复力,在角度很小的情况下:,
所以:
回复力的方向跟位移方向相反
即回复力的大小跟偏离平衡位置的距离成正比,受力的方向跟位移的方向相反,所以是简谐运动.
13.()a.;b.见解析;();
【解析】
()a.根据单摆受力分析可知,;
b.在中,当很小时,,乖于角对应的弧长与半径的比值.
当很小时,弧长近似等于弦长,即摆球偏离平衡位置的位移:,振动系数
代入简谐运动周期公式:;
单摆周期公式:;
()图乙中,摆球受到重力,电场力电和摆线拉力,与重力场中的单摆类比,等效的“重力”,,
代入单摆周期公式得:
图丙中,摆球受到重力,洛伦兹力下洛和摆线拉力,与重力场中的单摆类比,单摆周期与重力场中相同,.