有理数
1.2
有理数
1.2.2
数轴
[教学目标]
掌握数轴的概念,理解数轴上的点和有理数的对应关系;
会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.
[教学重点与难点]
重点:数轴的概念和用数轴上的点表示有理数.
难点:同上.
一.创设情境
引入新知
观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)
[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)
二.合作交流
探究新知
通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)
[小游戏]:在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答“到”
游戏前可先不加任何条件,游戏中发现问题,进行弥补.
总结游戏,明确用直线表示有理数的要求,
提出数轴的概念和要求(教科书第11页).
三.动手动脑
学用新知
1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).
2.画一个数轴,观察原点左侧是什么数,原点右侧是什么数?每个数到原点的距离是多少?
四.反复演练
掌握新知
教科书12练习.画出数轴并表示下列有理数:
1.5,-2.2,-2.5,,,0.
2.写出数轴上点A,B,C,D,E所表示的数:
[小结]
数轴需要满足什么样的条件;
数轴的作用是什么?
[作业]
必做题:教科书第15页习题5、6、7
[备选题]
1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有
个.
2.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是(
)
A.
B.-4
C.
D.
3.(1)(请先在头脑中想象点的移动,尝试解决下面问题,然后再画图解答)一个点在数轴上表示的数是-5,这个点先向左边移动3个单位,然后再向右边移动6个单位,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数?
(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?
问题1先给出情境,学生观察,思考,研究,表示.增强学生的合作意识.
满足的条件可以先不必明确,基本能明确就可以,在后面逐步明确
游戏的目的是使学生明白数与点的对应关系,并知道要想在直线上表示数必须满足的条件是什么.
明确数轴的正确画法和要求.
练习中注意纠正学生数轴画法的错误和点的表示错误
总结可以由教师提出问题,学生总结,教师完善
2题也可以启发学生反过来想,即点A向正方向移动1.5个单位.
3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了有理数
1.2
有理数
1.2.3
相反数(1)
[教学目标]
借助数轴,使学生了解相反数的概念
会求一个有理数的相反数
激发学生学习数学的兴趣.
[教学重点与难点]
重点:
理解相反数的意义
难点:
理解相反数的意义
提问
数轴的三要素是什么?
填空:
数轴上与原点的距离是2的点有
个,这些点表示的数是
;与原点的距离是5的点有
个,这些点表示的数是
。
相反数的概念:
只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。
概念的理解:
互为相反数的两个数分别在原点的两旁,且到原点的距离相等。
一般地,数a的相反数是,不一定是负数。
在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数
-(-3)是(-3)的相反数,所以-(-3)=3,于是
互为相反数的两个数之和是0
即如果x与y互为相反数,那么x+y=0;反之,若x+y=0,
则x与y互为相反数
相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。
问题1
求下列各数的相反数:
(1)-5
(2)
(3)0
(4)
(5)-2b
(6)
a-b
(7)
a+2
问题2
判断:
(1)-2是相反数
(2)-3和+3都是相反数
(3)-3是3的相反数
(4)-3与+3互为相反数
(5)+3是-3的相反数
(6)一个数的相反数不可能是它本身
问题3
化简下列各数中的符号:
(1)
(2)-(+5)
(3)
(4)
问题4
填空:
(1)a-4的相反数是
,3-x的相反数是
。
(2)是
的相反数。
(3)如果-a=-9,那么-a的相反数是
。
问题5
填空:
(1)若-(a-5)是负数,则a-5
0.
(2)
若是负数,则x+y
0.
问题6
已知a、b在数轴上的位置如图所示。
在数轴上作出它们的相反数;
用“<”按从小到大的顺序将这四个数连接起来。
问题7
如果a-5与a互为相反数,求a.
练习:教材15页
T3、4
1.2.3
相反数(2)
[教学目标]
掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3.体验数形结合的思想。
[教学难点]
归纳相反数在数轴上表示的点的特征
知识重点
相反数的概念
教学过程(师生活动)
设置情境,引入课题
问题1:请将下列4个数分成两类,并说出为什么要这样分类
-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳
深化主题提炼定义
给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习
给出规律解决问题
问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第15页T8
课堂小结
相反数的定义
互为相反数的数在数轴上表示的点的特征
怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业
必做题
教科书第15页习题9、10题
选做题
教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
小节:相反数的概念及注意事项
作业:18页第3题
以开放的形式创设情境,以学生进行讨论,并培养分类的能力,培养学生的观察与归纳能力,渗透数形思想
体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
利用相反数的概念得出求一个数的相反数的方法第一章
有理数
1.2
有理数
1.2.1
有理数
[教学目标]
正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
体验分类是数学上的常用的处理问题的方法.
[教学重点与难点]
重点:正确理解有理数的概念.
难点:正确理解分类的标准和按照定的标准进行分类.
一.知识回顾和理解
通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?.(3名学生板书)
[问题1]:我们将这三为同学所写的数做一下分类.
(如果不全,可以补充).
[问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类?
二.明确概念
探究分类
正整数、0、负整数统称整数,正分数和负分数统称分数.
整数和分数统称有理数
[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?
三.练一练
熟能生巧
1.任意写出三个数,标出每个数的所属类型,同桌互相验证.
2.把下列各数填入它所属于的集合的圈内:
15,-,-5,,,0.1,-5.32,-80,123,2.333.
正整数集合
负整数集合
正分数集合
负分数集合
[小结]
到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同.
[作业]
必做题:教科书第8页练习.P14
T1、2
作业2.把下列给数填在相应的大括号里:
-4,0.001,0,-1.7,15,.
正数集合{
…},负数集合{
…},
正整数集合{
…},分数集合{
…}
[备选题]
1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?
+7,-5,
,,79,0,0.67,,+5.1
2.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?
3.图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?
正数集合
整数集合
每名学生都参照前一名学生所写的,尽量写不同类型的,最后有下面同学补充.
在问题2中学生说出按整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后面分类是在解决。
教师可以按整数和分数的分类标准画出结构图,,而问题3中的分类图可启发学生写出.
在练习2中,首先要解释集合的含义.练习2中可补充思考:四个集合合并在一起是什么集合?(若降低难度可分开问)
这里可以提到无限不循环小数的问题.并特殊指明我们以前所见到的数中,只有π是一个特殊数,它不是有理数.但3.14是有理数.
作业2意在使学生熟悉集合的另一种表示形式.
利用此题明确自然数的范围.0是自然数.这点可以在前面的教学中出现.
3题是一个探索题,有一定难度,可以分步完成,不如先写出正数,在写出整数,观察都具备的是其中哪个数.有理数
1.2
有理数
1.2.4
绝对值
第2课时
有理数的大小比较
学习目标
1、理解有理数的绝对值与该数的关系,把握绝对值的代数意义
2、会利用绝对值比较2
个负数的大小,理解其中的转化思想[比较负数→比较正数
学习难点
绝对值与相反数意义的理解,数形结合的思想
教学过程
【情景创设】
1、说出绝对值的几何含义
2、互为相反数的2个数在数轴上有什么位置关系
3、书本第23页,根据绝对值与相反数的意义填空。(做在书上)
二、思考问题:一个数的绝对值与这个数本身、或与它的相反数之间有什么关系?
用符号表示为
|a|=
三.问题:求下列各数的绝对值
+6,
-3,
-2.7,
0,
-2/3,
4.3,
-8
四.议一议:
互为相反数的两个数的绝对值有什么关系?
五.随堂练习
①一个数的绝对值是它本身,这个数是(
)
A、正数
B、0
C、非负数
D、非正数
②一个数的绝对值是它的相反数,这个数是
(
)
A、负数
B、0
C、非负数
D、非正数
③什么数的绝对值比它本身大?什么数的绝对值比它本身小?
④
绝对值是4的数有几个?各是什么?
绝对值是0的数有几个?各是什么?
有没有绝对值是-1的数?为什么?
六.讨论
:两个数比较大小,绝对值大的那个数一定大吗?
七.做一做
分别找出到原点的距离为3和5的数,并比较它们的大小
。
【知识巩固】
选择题
如果|a|=-a,那么
(
)
A a
〉0
B
a
<0
C
a
0
D
2、下列各数中,一定互为相反数的是
(
)
A
-(-5)和-|-5|
B
|-5|和|+5|
C
-(-5)和|-5|
D
|a|和|-a|
3、若一个数大于它的相反数,则这个数是
(
)
A
正数
B
负数
C
非负数
D
非正数
下列判断中:(1)负数没有绝对值;(2)绝对值最小的有理数是0;(3)任何数的绝对值都是非负数;(4)互为相反数的两个数的绝对值相等,其中正确的个数有(
)
A
1个
B
2个
C
3个
D
4个
二、填空题
1.(1)-3_______-0.5;
(2)+(-0.5)_______+|-0.5|
(3)-8_______-12
(4)-5/6______-2/3
(5)
-|-2.7|______-(-3.32)
2、有理数a、b在数轴上如图,用
>
、=
或
<
填空
(1)a____b
,
(2)
|a|___|b|
,
(3)–a___-b,
(4)|a|___a
,
(5)
|b|____b
3、如果|x|=|-2.5|,则x=______
4、绝对值小于3的整数有____个,其中最小的一个是____
5、|-3|的相反数是
;若|x|=8,则x=
.
6、
的相反数等于它本身,
的绝对值等于它本身.
7、绝对值小于3的非负整数是 .
8、-3.5的绝对值的相反数是
.-0.5的相反数的绝对值是
.
9、|-3|-|-4|=
-
=
.
10、在-,-0.42,-0.43,-中,最大的一个数是
.
三、解答题
11、比较-与-的大小,并说明理由.
12、用“〈”将-4,12,,-|-3|连接起来,并说明理由.
13、已知a、b、c在数轴上的位置如图所示,试求|a|+|c-3|+|b|的值.有理数
1.2
有理数
1.2.4
绝对值
第1课时
绝对值
学习目标
1.借助数轴,理解绝对值的概念,能求一个有理数的绝对值
2.会利用绝对值比较两个有理数的大小
3.经历将实际问题数学化的过程,感受数学与生活的关系,贯彻数形结合的思想
学习难点
绝对值意义的理解
教学过程
【情景创设】
小明的家在学校西边3㎞处,小丽的家在学校东边2km处。他们上学所花的时间与各家到学校的距离有什么关系?
数轴上表示一个数的点与原点的距离,叫做这个数的绝对值
绝对值的表示方法如下:-2的绝对值是2,记作|
-2|=2;3的绝对值是3
,记作|3|=3
口答:如图,你能说出数轴上A、B、C、D、E、F各点所表示的数的绝对值
表示0的点(原点)与原点的距离是0,所以0的绝对值是0
总结:从上面的问题中你能找到求一个数的绝对值的方法吗?
【例题精讲】问题1、求4、-3.5的绝对值。
活动一:以某一小组为数轴,一位同学为原点,规定正方向后,请大家思考数轴上的各位同学所代表的数是多少?这些数到原点的距离是多少?绝对值是几?
活动二:请一位同学随便报一个数,然后点名叫另一位同学说出它的绝对值。
思考:正数公司和负数公司招聘职员,要求是经过绝对值符号“︱︱”这扇大门后,结果为正就是正数公司职员,结果为负就是负数公司职员。
(1)负数公司能招到职员吗?
(2)0能找到工作吗?
总结:
问题2、比较-3与-6的绝对值的大小
练一练:求-3、-0.4、-2的绝对值,并用“〈”号把这些绝对值连接起来
计算:①
②
③
④
【拓展提高】
(1)求绝对值不大于2的整数______
(2)绝对值等于本身的数是___,绝对值大于本身的数是_____.
(3)绝对值不大于2.5的非负整数是____
【知识巩固】
1.判断题
(1)任何一个有理数的绝对值都是正数.
(
)
(2)如果一个数的绝对值是5,则这个数是5
(
)
(3)绝对值小于3的整数有2,1,0.
(
)
2.填空题
(1)
+6的符号是_______,绝对值是_______,的符号是_______,绝对值是_______
在数轴上离原点距离是3的数是________________
绝对值等于本身的数是___________
绝对值小于2的整数是________________________
用”>”、”<”、”=”连接下列两数:
∣∣___∣∣
∣-3.5∣___-3.5
∣0∣____∣-0.58∣
∣-5.9∣___∣-6.2∣
(6)
数轴上与表示1的点的距离是2的点所表示的数有___________________.
(7)
计算|4|+|0|-|-3|=______________.
3.选择题
(1)下列说法中,错误的是(
)
A
+5的绝对值等于5
B
绝对值等于5的数是5
C
-5的绝对值是5
D
+5、-5的绝对值相等
(2)绝对值最小的有理数是
(
)
A.1
B.0
C.-1
D.不存在
(3)绝对值最小的整数是(
)
A.-1
B.1
C.0
D.不存在
(4)绝对值小于3的负数的个数有(
)
A.2
B.3
C.4
D.无数
(5)绝对值等于本身的数有(
)
A.1个
B.2个
C.
4个
D.无数个
4.解答题.
(1)求下列数的绝对值,并用“<”号把这些绝对值连接起来.
-1.5,
-3.5,
2,
1.5,
-2.75
计算:
作业:习题1.4
第6、7题
0
1
2
4
3
-3
6
5
-1
-2
-4
-5
-6
A
E
D
C
B
F