《3.1平均数》
508026035教材分析
00教材分析
本节课选自苏科版九年级上册第三章第一节的内容,本节课的内容是在学习了算术平均数的基础上进一步学习加权平均数,既是对前面知识的深化与拓展,又是联系现实生活培养学生的应用数学意识和创新的能力的良好素质.
8255122555教学目标
00教学目标
【知识与能力目标】
掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数.
【过程与方法目标】
经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力.
【情感态度价值观目标】
通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.
127040005教学重难点
00教学重难点
【教学重点】
让学生感受算术平均数与加权平均数的练习和区别.
【教学难点】
利用算术平均数与加权平均数解决问题.
444573660课前准备
00课前准备
课件、多媒体、练习本
7620146050教学过程
00教学过程
一、导入新课
内容:1. 投影展示课本第八章的章前文字、章前图和一组问题,引入本章主题。
2. 用篮球比赛引入本节课题:
篮球运动是大家喜欢的一种运动项目,尤其是男生们更是倍爱有加。下面播放一段CBA(中国篮球协会)2005—2006赛季“广东宏远队”和“八一双鹿队”的一场比赛片段,请同学们欣赏。
在学生观看了篮球比赛的片段后,请同学们思考:
(1)影响比赛的成绩有哪些因素?(心理、技术、配合、身高、年龄等因素)
(2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”? 要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个球队队员身高的平均数作出判断)
在学生的议论交流中引入本节课题:“平均数”
二、新课学习
内容1: 算术平均数
投影教材提供的CBA(中国篮球协会)2000—2001赛季冠亚军球队队员的身高、年龄的表格,提出问题:
“八一双鹿队”和“上海东方大鲨鱼队”两支篮球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?与同伴交流。
(1)学生先独立思考,计算出平均数,然后在小组交流。
(2)各小组之间竞争回答,答对的打上星,给予鼓励。
答案:八一双鹿队队员的平均身高为1.99m,平均年龄为25.3 岁;
上海东方大鲨鱼队队员的平均身高为1.98 m,平均年龄为23.3岁。所以,八一双鹿队队员的身材更为高大,上海东方大鲨鱼队队员更为年轻。
教师小结:日常生活中我们常用平均数来表示一组数据的“平均水平”。
一般地,对于n个数x1,x2,…,xn,我们把(x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数,记为。
内容2: 加权平均数
想一想:小明是这样计算上海东方大鲨鱼队队员的平均年龄的:
年龄/岁
16
18
21
23
24
26
29
34
相应队员数
1
2
4
1
3
1
2
1
平均年龄 =(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷
(1+2+4+1+3+1+2+1)≈23.3(岁)
你能说说小明这样做的道理吗?
学生经过讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和时用了乘法,因此这是一种求算术平均数的简便方法。
例1:使用教材的例1进行教学,引导学生思考讨论:第(1)(2)问录用的人不一样说明了什么?从中认识由于测试的每一项的重要性不同,所以所占的比份也不同,计算出的平均数就不同,因此重要性的差异对结果的影响是很大的。
在学生认识的基础上,教师结合例1给出加权平均数的概念:
实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”。如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称
为A的三项测试成绩的加权平均数。
结论总结
1.怎样求一组数据的算术平均数和加权平均数?
2.公式分别是什么?
3.怎样理解加权平均数中的权?
四、课堂练习
内容:1. 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童。每人捐款金额如下(单位:元):
10, 12,13.5,21,40.5,19.5,20.8,25,16,30。
这10名同学平均捐款多少元?
2. 某校在期末考核学生的体育成绩时,将早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%。小颖的上述成绩分别为92分、80分、84分,则小颖这学期的体育成绩是多少?
3. 从一批机器零件毛坯中取出20件,称得它们的质量如下:(单位:千克)
2001 2007 2002 2006 2005 2006 2001 2009 2008 2010
(1)试求这批零件质量的平均数。
(2)你能用新的简便方法计算它们的平均数吗?
五、作业布置
见课本练习1,2,3.
六、板书设计
3.1平均数
1.算术平均数定义
2.加权平均数的定义
3. 例题讲解
-20955154940教学反思
00教学反思
略。