12.3二次根式的加减
教学目标:通过自主探究概括同类二次根式的概念及二次根式加减法法则;了解同类二次根式的概念,会识别同类二次根式,会利用法则进行二次根式的加减运算;通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.
教学重点:同类二次根式的概念及二次根式加减运算法则.
教学难点:探讨二次根式加减法运算的方法,快速准确进行二次根式加减法的运算.
板块一、回顾最简二次根式,探究同类二次根式
问题1:满足什么条件的二次根式是最简二次根式(同伴相互说说)
问题2:化简下列两组二次根式,思考每组化简后有什么共同特点?
(2)
二次根式叫同类二次根式。
问题3、根据所学解决下列问题
B、 C、 D、
归纳:判断同类二次根式的方法:
化
看
板块二、探究同类二次根式的合并
问题1、根据刚刚所学,请举例一组同类二次根式。
问题2、请用同样的方法解决下列问题:
问题3、类比合并同类项,说说你是如何合并同类二次根式的。
板块三、探究二次根式的加减
问题1、计算
二次根式的加减:
问题2、根据所学解决下列问题
归纳:二次根式加减法的一般步骤:
问题3、 如图,两个圆的圆心相同,半径分别为R、r,面积分别是18cm2、8cm2.求圆环的宽度(两圆半径之差).
板块四、课堂小结
问题1、说出 的3个同类二次根式,写在学案上。
问题2、将上面你写的同类二次根式用“+”连接,想一想,如何合并上面的同类二次根式
问题3、二次根式的加减法的步骤是哪几步?
板块五、拓展延伸
问题1、有一个等腰三角形的两边长分别为和 ,求这个等腰三角形的周长。
作业
在二次根式:①②③④是同类二次根式的是
2.下列二次根式中,能与合并的二次根式是( )
(A) (B) (C) (D)
3.下列计算:①;②;③;④;⑤.其中正确的是
4. 如果最简根式是同类根式,那么a=_____,b =______.
5.如果最简二次根式和是可以合并的,那么=
6.计算:
(1) (2)
(3) (4)
(6)
7.(1)两个正方形的面积分别是2和8,求这个两个正方形边长的和
(2)两个正方形的面积分别是s和4s(s>0),求这个两个正方形边长的和