六年级上册数学教案 第三单元第9课时解决问题(4) 人教版

文档属性

名称 六年级上册数学教案 第三单元第9课时解决问题(4) 人教版
格式 docx
文件大小 20.9KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-07-11 21:45:54

图片预览

文档简介

第9课时 解决问题(4)
?教学内容:教材第42-43页例7、第43页“做一做”及第45页练习九第6-9题。
?教学目标:1.掌握分数工程问题的解题方法。
2.经历分析分数工程问题数量关系的过程,会解答有关分数工程问题的应用题。
3.在解决问题的过程中培养分析问题和解决问题的能力。
?教学重点:掌握分数工程问题的解题方法。
?教学难点:掌握工作效率的表示方法。
??教学过程:
一、创设情境 明确目标
1.师:同学们,我们回忆一下,以前学过的工程问题涉及到哪三种量?
2.师:那它们的关系又如何呢?(课件出示)
生:工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
3.出示教材例7:
(1)读一读,说一说这也是哪类问题。
(2)引导学生说出工程问题。
(3)想一想,这与以前学习的工程问题有什么不同?
4.生答:缺少具体的工作总量。
5.师:这节课就来研究这类工程问题。
6.揭题:工程问题。
二、探索交流 学习新知
(一)阅读理解
1.读一读,找一找,题中给出了哪些数学信息?要求什么问题?
2.找出已知量和未知量,帮助学生理解单独修和合修,鼓励学生估算合修的天数。(加强估算意识的培养。)
(二)分析与解答
1.师:这条路有多长呢?引发学生的思考。
2.讨论交流。
这个环节要引导学生发现问题,大胆质疑然后大胆假设并尝试解决,让学生经历思考的空间和过程。
3.结合交流,教师思维引导:这条道路的总长是未知的,要解答此题我们可以用假设法。
4.学生试着做一做。
5.展示学生的做法。
方法一:假设这条道路的总长是12和18的最小公倍数即36 km,先分别求出一队和二队每天各修多少千米,再求出两队每天共修了多少千米,最后再用36 km除以两队每天共修的千米数,就是我们要求的两队合修需要的天数。
36÷(36÷12+36÷18)
=36÷(3+2)
=36÷5
=7.2(天)
方法二:可以假设这条路的长度是“1”,用路程“1”除以时间12和18,分别求出一队和二队的速度,再求出他们的速度和,然后用“1”除以速度和,就是两队合修需要的天数。
1÷(+)
=1÷(+)
=7(天)
(三)展示交流
1.对比分析:用分数来解决工程问题的解题方法与用整数来解决工程问题的方法有什么区别和联系?
小结:用分数来解决工程问题的解题方法与用整数来解决工程问题的方法相同,所用数量关系相同;在用分数解决工程问题时,通常没有具体的工作总量,解题时把工作总量看做单位“1”,用单位时间内完成工作总量的几分之一表示工作效率。
2.让学生掌握检验的方法,养成回顾与反思的习惯。
三、巩固提高
1.完成教材第43页“做一做”。先让学生自主解答,然后集体交流。
2.完成练习九第6题。
3.独立完成练习九第7-9题。
四、课堂小结
1.通过这节课的探索,你有什么收获?
2.你还有什么想法或疑问要跟老师和同学说的吗?
【板书设计】
解决问题(4)
假设这条路的长度是1。
1÷(+)
=1÷
=7.2(天)
答:7.2天能修完。
【教学反思】
教师让学生大胆地猜测,用课件出示“这条道路有多长呢?”能不能假设知道这条路有多长呢?先让学生用实际数量解决问题。 然后将运用实际数量解题的思路迁移到单位“1”中,由于用分数解题的方法在学生的头脑中已经形成,所以教师只要提供给学生机会,让学生自己去探索、去研究总结出解题的方法即可。还要适时地评价、鼓励,使学生的探索欲望越来越强烈,从而使他们的潜能、创造力也得到张扬,真正体现了以学生为主体的教学原则。