2.1电子
1.发射阴极射线的真空玻璃管中高电压的作用是( )
A.使玻璃壁产生压电效应从而产生辉光
B.使管内产生阴极射线
C.使管内障碍物的电势升高
D.使电子加速
2.关于阴极射线,下列说法正确的是( )
A.阴极射线就是稀薄气体导电的辉光放电现象
B.阴极射线是在真空管内由阴极发出的质子流
C.阴极射线是组成物体的原子
D.阴极射线可以直线传播,也可被电场、磁场偏转
3.下列说法中不符合物理史实的是( )
A.汤姆孙提出了原子的“西瓜模型”
B.粒子的散射实验表明原子核具有复杂结构
C.玻尔第一次将量子观念引入原子领域,成功地解释了氢原子光谱的实验规律
D.密立根通过著名的“油滴实验”精确测定了电子电荷
4.下列关于阴极射线的说法正确的是( )
A.阴极射线是高速的质子流
B.阴极射线可以用人眼直接观察到
C.阴极射线是高速运动的电子流
D.阴极射线是电磁波
5.阴极射线管中电子束由阴极沿x轴正方向射出,在荧光屏上出现一条亮线(如图),要使该亮线向z轴正方向偏转,可加上( )
A.z轴正方向的磁场 B.y轴负方向的磁场
C.z轴正方向的电场 D.y轴负方向的电场
6.汤姆孙对阴极射线本质的研究,采用的科学方法是( )
A.用阴极射线轰击金箔,观察其散射情况
B.用“油滴实验”精确测定电子的带电量
C.用阴极射线轰击荧光物质,对荧光物质发出的光进行光谱分析
D.让阴极射线通过电场和磁场,通过阴极射线的偏转情况判断其电性和计算其比荷
7.下面对阴极射线的认识正确的是( )
A.阴极射线是由阴极发出的粒子撞击玻璃管壁上的荧光粉而产生的
B.只要阴阳两极间加有电压,就会有阴极射线产生
C.阴极射线是真空玻璃管内由阴极发出的射线
D.阴阳两极间加有高压时,电场很强,阴极中的电子受到很强的库仑力作用而脱离阴极
8.英国物理学家汤姆孙通过对阴极射线的实验研究发现( )
A.阴极射线在电场中偏向正极板一侧
B.阴极射线在磁场中受力情况跟正电荷受力情况相同
C.不同材料所产生的阴极射线的比荷不同
D.汤姆孙并未精确得出阴极射线粒子的电荷量
9.下列说法中,正确的是( )
A.汤姆生精确地测出了电子电荷量e=1.602 177 33(49)×10-19C
B.电子电荷量的精确值是密立根通过“油滴实验”测出的
C.汤姆生油滴实验更重要的发现是:电荷量是量子化的,即任何电荷量只能是e的整数倍
D.通过实验测得电子的荷质比及电子电荷量e的值,就可以确定电子的质量
10.汤姆生通过对阴极射线的探究,最终发现了电子,由此被称为“电子之父”,关于电子的说法正确的是( )
A.任何物质中均有电子
B.不同的物质中具有不同的电子
C.电子质量是质子质量的1836倍
D.电子是一种粒子,是构成物质的基本单元
11.关于电子的发现,下列叙述中正确的是( )
A.电子的发现,说明原子是由电子和原子核组成的
B.电子的发现,说明原子具有一定的结构
C.电子是第一种被人类发现的基本粒子
D.电子的发现,比较好地解释了物体的带电现象
12.如图所示,让一束均匀的阴极射线以速率垂直进入正交的电、磁场中,选择合适的磁感应强度和电场强度,带电粒子将不发生偏转,然后撤去电场,粒子将做匀速圆周运动,测得其半径为,求阴极射线中带电粒子的比荷。
13.近百年前英国科学家汤姆逊以及他所带领的一批学者对原子结构的研究奠定了近代物理学的基石,其中他对阴极射线粒子比荷测定实验最为著名,装置如图(1)所示。阜宁中学某班的学生在实验室重做该实验,装置如图(2)所示,在玻璃管内的阴极K 发射的射线被加速后,沿直线到达画有正方形方格的荧光屏上。在上下正对的平行金属极板上加上电压,在板间形成电场强度为 E 的匀强电场,射线向上偏转;再给玻璃管前后的励磁线圈加上适当的电压,在线圈之间形成磁感应强度为 B 的匀强磁场,射线沿直线运动,不发生偏转。之后再去掉平行板间的电压,射线向下偏转,经过屏上 A 点,如图(3)所示。
(不计射线的重力,匀强电场、匀强磁场范围限定在刻度“1”和“7”所在的竖直直线之间,且射线由刻度“1”所在位置进入该区域)。求:
(1)求该射线进入场区域时的初速度v ;
(2)已知正方形方格边长为d ,求该射线粒子的比.
(3)带电粒子在磁场中运动到A点的时间?
14.如图所示为汤姆孙用来测定电子比荷的装置.当极板P和间不加偏转电压时,电子束打在荧光屏的中心O点处,形成一个亮点;加上偏转电压U后,亮点偏离到点,点到O点的竖直距离为d,水平距离可忽略不计;此时在P与之间的区域里再加上一个方向垂直于纸面向里的匀强磁场,调节磁感应强度,当其大小为B时,亮点重新回到O点,已知极板水平方向长度为,极板间距为b,极板右端到荧光屏的距离为;
(1)求打在荧光屏O点的电子速度的大小;
(2)推导出电子比荷的表达式。
参考答案
1.D
【解析】
在阴极射线管中,炽热的阴极发射电子流,再通过高电压的加速而获得能量,与玻璃壁碰撞而产生辉光,故选项D正确,A、B、C错误。
2.D
【解析】
ABC.阴极射线是在真空管中由阴极发出的电子流,电子是原子的组成部分,故ABC错误;
D. 阴极射线是在真空管中由阴极发出的电子流,可被电场、磁场偏转,也可以直线传播,D正确。
3.B
【解析】
汤姆孙提出了原子的“西瓜模型”,A正确;α粒子散射实验表明,原子具有核式结构,卢瑟福的原子核式结构学说能很好地解释α粒子的散射实验事实,B错误;玻尔的原子理论第一次将量子观念引入原子领域,成功地解释了氢原子光谱特征,C正确;密立根著名的“油滴实验”精确测定了电子的电荷量,D正确.
4.C
【解析】
阴极射线是高速运动的电子流,人们只有借助于它与物质相互撞击时,使一些物质发出荧光等现象才能观察到,故选项C正确,ABD错误。
5.B
【解析】
A、若加一沿z轴正方向的磁场,根据左手定则,洛伦兹力方向沿y轴正方向,亮线向y轴正方向偏转,故A错误;
B、若加一沿y轴负方向的磁场,根据左手定则,洛伦兹力方向沿z轴正方向,亮线向z轴正方向偏转,故B正确;
C、若加一沿z轴正方向的电场,电子受电场力作用沿z轴的负方向偏转,故C错误;
D、若加一沿y轴负方向的电场,电子受电场力作用向y轴正方向偏转,故D错误。
6.D
【解析】
汤姆孙对阴极射线本质的研究采用的主要方法是:让阴极射线通过电磁场,通过偏转情况判断其电性,结合类平抛运动与圆周运动的公式,即可计算其比荷,故D正确。
7.CD
【解析】
AC.阴极射线是真空玻璃管内由阴极直接发出的射线,故选项A错误,C正确;
BD.只有当两极间有高压且阴极接电源负极时,阴极中的电子才会受到足够大的库仑力作用而脱离阴极成为阴极射线,故选项B错误,D正确。
8.AD
【解析】
A.阴极射线实质上就是高速电子流,所以在电场中偏向正极板一侧,故选项A正确;
B.由于电子带负电,所以其在磁场中受力情况与正电荷不同,故选项B错误;
C.不同材料所产生的阴极射线都是电子流,所以它们的比荷是相同的,故选项C错误;
D.最早精确测出电子电荷量的是美国物理学家密立根,故选项D正确.
9.BD
【解析】
试题分析:密立根油滴实验测出了电子的电量,所以A错,B对;
密立根通过“油滴实验”确定电荷量是量子化的,即任何电荷量只能是e的整数倍,故C错误;根据和电子电荷量e的值,可以确定电子的质量,故D正确.
考点:元电荷 电子的发现
点评:解答本题的关键是了解密立根油滴实验的有关知识:密立根用在电场和重力场中运动的带电油滴进行实验,发现所有油滴所带的电量均是某一最小电荷的整数倍,该最小电荷值就是电子电荷.
10.AD
【解析】
汤姆生对不同材料的阴极发出的射线进行研究,发现均为同一种相同的粒子即电子,电子是构成物质的基本单元,它的质量远小于质子的质量。
A. 任何物质中均有电子,选项A符合题意;
B. 不同的物质中具有不同的电子,选项B不符合题意;
C. 电子质量是质子质量的1836倍,选项C不符合题意;
D. 电子是一种粒子,是构成物质的基本单元,选项D符合题意;
11.BCD
【解析】
AB、发现电子之前,人们认为原子是不可再分的最小粒子,电子的发现,说明原子有一定的结构,但并没有证明原子核的存在,也不能说明原子是由电子和原子核组成的,故A错误,B正确;
C、电子是人类发现的第一种基本粒子,故C正确;
D、物体带电的过程,就是电子的得失和转移的过程,从而比较好地解释了物体的带电现象,故D正确。
12.
【解析】
因为带电粒子在复合场中不偏转,所以,即,撤去电场后,粒子在洛伦兹力作用下做匀速圆周运动,则,联立可得
13.(1) (2) (3)
【解析】
(1)射线被加速后在电场力和洛伦兹力共同作用匀速直线运动,根据平衡得:
qE=qvB
解得:射线被加速后的速度为
(2)去掉金属板间电压后,粒子不再受到电场力,只在洛伦兹力作用下做匀速圆周运动,经过A点,则圆心为O点,半径为r,如图所示
则有
解得:
因为洛伦兹力提供向心力,则
联立解得:
(3)设粒子轨迹对应的圆心角为θ,根据几何关系可得
解得
带电粒子在磁场中运动到A点的时间为:
14.(1) (2)
【解析】
(1)电子在正交的匀强电场和匀强磁场中做匀速直线运动,有:
得:,即打到荧光屏O点的电子速度的大小为;
(2)P与之间只有偏转电场时,电子的加速度为a,运动时间为t,电子离开偏转电场的偏移量为y,速度偏转角为,根据运动学公式:
根据牛顿第二定律有:
运动时间:
解得:
由于:
可得:。