单元测试卷:《投影与视图》
一.选择题
1.如图所示的几何体的主视图是( )
A. B. C. D.
2.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是( )
A. B. C. D.
3.由六个相同的立方体搭成的几何体如图所示,下面有关它的三个视图的说法正确的是( )
A.左视图与主视图相同 B.俯视图与主视图相同
C.左视图与俯视图相同 D.三个视图都相同
4.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A.主视图 B.俯视图 C.左视图 D.一样大
5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A.6π B.4π C.8π D.4
6.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )
A.60π B.70π C.90π D.160π
7.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是( )
A.3 B.4 C.5 D.6
二.填空题(共11小题)
8.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于 米.
9.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n= .
10.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要 个小立方体.
11.如图所示,是一个简单几何体的三视图,则这个几何体的侧面积等于 .
12.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为 m.
13.圆锥的主视图是边长为4cm的等边三角形,则该圆锥侧面展开图的面积是 cm2.
14.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是 .
15.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .
16.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,则x的最小值为 .
17.桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看如图所示,这个几何体最多由 个这样的正方体组成.
18.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是 .
﹙直角填写正确的结论的序号﹚.
三.解答题(共12小题)
19.已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.
20.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
21.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:
碟子的个数 碟子的高度(单位:cm)
1 2
2 2+1.5
3 2+3
4 2+4.5
… …
(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);
(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.
22.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.
(1)请画出它的主视图和左视图;
(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为
(3)在不改变主视图和俯视图的情况下,最多可添加 块小正方体.
23.如图是某工件的三视图,求此工件的全面积和体积.
24.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)
25.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形.
26.根据如图视图(单位:mm),求该物体的体积.
27.已知如图为一几何体从不同方向看到的图形.
(1)写出这个几何体的名称;
(2)任意画出这个几何体的一种表面展开图;
(3)若长方形的高为8厘米,三角形的边长为3厘米,求这个几何体的侧面积.
28.某游乐园门口需要修建一个由正方体和圆柱组合而成的一个立体图形,已知正方体的边长与圆柱的直径及高相等,都是0.8m.
(1)请画出它的主视图、左视图、俯视图.
(2)为了好看,需要在这立体图形表面刷一层油漆,已知油漆每平方米40元,那么一共需要花费多少元?(结果精确到0.1)
29.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)
30.如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.
参考答案
一.选择题
1.解:圆锥体的主视图是等腰三角形,
故选:C.
2.解:如图所示的几何体的俯视图是D.
故选: D.
3.解:从正面看第一层是三个小正方形,第二层中间一个小正方形,
从左边看第一层是三个小正方形,第二层中间一个小正方形,
故选:A.
4.解:如图,该几何体正视图是由5个小正方形组成,
左视图是由3个小正方形组成,
俯视图是由5个小正方形组成,
故三种视图面积最小的是左视图.
故选:C.
5.解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
那么它的表面积=2π×2+π×1×1×2=6π,故选A.
6.解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,
所以其体积为10×(42π﹣32π)=70π,
故选:B.
7.解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,
第二层最少有1个小正方体,
因此组成这个几何体的小正方体最少有3+1=4个.
故选:B.
二.填空题(共11小题)
8.解:作DH⊥AB于H,如图,则DH=BC=8m,CD=BH=2m,
根据题意得∠ADH=45°,
所以△ADH为等腰直角三角形,
所以AH=DH=8m,
所以AB=AH+BH=8m+2m=10m.
故答案为10.
9.解:最少需要7块如图(1),最多需要9块如图(2)
故m=9,n=7,则m+n=16.
10.解:由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层只有1个,
故组成这个几何体的小正方体的个数最少为:5+2+1=8(个).
故答案为:8.
11.解:由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,
∴这个几何体的侧面积等于3×2×3=18,
故答案为:18.
12.解:当旋转到达地面时,为最短影长,等于AB,
∵最小值3m,
∴AB=3m,
∵影长最大时,木杆与光线垂直,
即AC=5m,
∴BC=4,
又可得△CAB∽△CFE,
∴=,
∵AE=5m,
∴=,
解得:EF=7.5m.
故答案为:7.5.
13.解:根据题意得:圆锥的底面半径为2cm,母线长为4cm,
则该圆锥侧面展开图的面积是8πcm2.
故答案为:8π
14.解:该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,
所以该几何体的主视图和左视图的面积之和是3+4=7,
故答案为:7.
15.解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,
所以其侧面积为3×6×6=108,
故答案为:108.
16.解:如图,当红灯下沿,大巴车车顶,小张的眼睛三点共线时,
∵CD∥AB,
∴△ECD∽△EAB,
∴=,
∴=,
解得x=10,
故答案为10
17.解:∵由主视图可得组合几何体有3列,由左视图可得组合几何体有2行,
∴最底层几何体最多正方体的个数为:3×2=6,
∵由主视图和左视图可得第二层2个角各有一个正方体,
∴第二层共有2个正方体,
∴该组合几何体最多共有6+2=8个正方体.
故答案为:8.
18.解:当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m最大,则m>AC,①成立;
①成立,那么②不成立;
最小值为AB与底面重合,故n=AB,故③成立;
由上可知,影子的长度先增大后减小,④成立;
故答案为:①③④.
三.解答题(共12小题)
19.解:(1)作法:连接AC,过点D作DF∥AC,交直线BE于F,
则EF就是DE的投影.(画图(1分),作法1分).
(2)∵太阳光线是平行的,
∴AC∥DF.
∴∠ACB=∠DFE.
又∵∠ABC=∠DEF=90°,
∴△ABC∽△DEF.
∴=,
∵AB=5m,BC=4m,EF=6m,
∴,
∴DE=7.5(m).
20.(1)解:如图,点O为灯泡所在的位置,
线段FH为小亮在灯光下形成的影子.
(2)解:由已知可得,=,
∴=,
∴OD=4m.
∴灯泡的高为4m.
21.解:由题意得:
(1)2+1.5(x﹣1)=1.5x+0.5
(2)由三视图可知共有12个碟子
∴叠成一摞的高度=1.5×12+0.5=18.5(cm)
22.解:(1)它的主视图和左视图,如图所示,
(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面有32个,所以喷色的面积为32,
故答案为32.
(3)在不改变主视图和俯视图的情况下,最多可添加1个小正方体,
故答案为1.
23.解:由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,
这圆锥的母线长为=10(cm),
圆锥的侧面积为s=πrl=×20π×10=100π (cm2),
圆锥的底面积为102π=100πcm2,
圆锥的全面积为100π+100π=100(1+)π(cm2);
圆锥的体积×π×(20÷2)2×30=1000π(cm3).
故此工件的全面积是100(1+)πcm2,体积是1000πcm3.
24.解:在Rt△ABD中,∵tan∠ADB=,
∴BD==,
在Rt△ACB中,∵tan∠ACB=,
∴BC===,
∵BC﹣BD=8,
∴﹣=8,
∴AB=4(m).
答:树高AB为4米.
25.解:
26.解:由三视图知:该几何体是两个圆柱叠放在一起,
上面圆柱的底面直径为8,高为4,
下面圆柱的底面直径为16,高为16,
故体积为π(16÷2)2×16+π(8÷2)2×4=1088πmm3.
27.解:(1)正三棱柱;
(2)展开图如下:
(3)这个几何体的侧面积为3×8×3=72(平方厘米).
28.解:(1)如图所示:
(2)根据题意得出:0.8×0.8×5+0.8π×0.8=(0.64π+3.2)(m2),
40×(0.64π+3.2)≈208.4(元),
答:一共需要花费208.4元.
29.解:三视图如下:
30.解:∵CD∥AB,
∴△EAB∽△ECD,
∴=,即=①,
∵FG∥AB,
∴△HFG∽△HAB,
∴=,即=②,
由①②得=,
解得BD=7.5,
∴=,解得:AB=7.
答:路灯杆AB的高度为7m.