3.4 基本不等式

文档属性

名称 3.4 基本不等式
格式 zip
文件大小 142.6KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2011-06-11 19:49:37

图片预览

文档简介

 第3章 不等式
§3.4基本不等式
经典例题:若a,b,c都是小于1的正数,求证:,,不可能同时大于
1. 若,下列不等式恒成立的是          (   )
A.   B.  C.  D.
2. 若且,则下列四个数中最大的是      ( )
A.      B.     C.2ab      D.a
3. 设x>0,则的最大值为 (   )
A.3      B.     C.    D.-1
4. 设的最小值是( )
A. 10 B. C. D.
5. 若x, y是正数,且,则xy有         (   )
A.最大值16  B.最小值 C.最小值16  D.最大值
6. 若a, b, c∈R,且ab+bc+ca=1, 则下列不等式成立的是 ( )
A. B.
C. D.
7. 若x>0, y>0,且x+y4,则下列不等式中恒成立的是 ( )
A. B. C. D.
8. a,b是正数,则三个数的大小顺序是 (   )
A.   B.  
C.   D.
9. 某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有(   ) 
A.    B.   C.   D.
10. 下列函数中,最小值为4的是     (   )
A. B.
C.     D.
11. 函数的最大值为 .
12. 建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为 元.
13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 .
14. 若x, y为非零实数,代数式的值恒为正,对吗?答 .
15. 已知:, 求mx+ny的最大值.
16. 已知.若、, 试比较与的大小,并加以证明.
17. 已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值.
18. 设.证明不等式 对所有的正整数n都成立.
§3.3二元一次不等式组与简单的线性规划问题
经典例题:思路分析:主要是去绝对值,可以运用分类讨论思想依绝对值的定义去掉绝对值符号.也可以运用化归、转化思想化陌生问题为熟悉问题,化复杂问题为简单问题.
解法一:原不等式|x-2|+|y-2|≤2等价于
作出以上不等式组所表示的平面区域:它是边长为22的正方形,其面积为8.
解法二:∵|x-2|+|y-2|≤2是|x|+|y|≤2经过向右、向上各平移2个单位得到的,
∴|x-2|+|y-2|≤2表示的平面区域的面积等于|x|+|y|≤2表示的平面区域的面积,由于|x|+|y|≤2的图象关于x轴、y轴、原点均对称,故求得平面区域如下图所示的面积为2,故|x|+|y|≤2的面积为4×2=8.
∴所求面积为8.
当堂练习:
1.C; 2.B; 3. ; 4. 甲地运往B地300t,乙地运往A地200t,运往B地150t,运往C地400t,5650元;
5. 思路分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.
解:运用“直线定界,特殊点定域”的方法,先画出
直线x-y+5=0(画成实线),如下图,取原点(0,0),
代入x-y+5.∵0-0+5=5>0,∴原点在x-y表示的
平面区域内,即x-y+5≥0表示直线x-y+5=0上及右
下方的点的集合,同理可得x+y≥0表示直线x+y=0
上及右上方的点的集合,x≤3表示直线x=3上及左方的点的集合.
6. 思路分析:这是一个求最大利润问题,首先根据条件设种两种作物分别为x、y亩,根据条件列出不等式组和目标函数画图,即可得到最大利润.
解:如下图所示,设水稻种x亩,花生种y亩,则由题意得
而利润P=(3×400-240)x+(5×100-80)y
=960x+420y(目标函数),
可联立得交点B(1.5,0.5).
故当x=1.5,y=0.5时,
Pmax=960×1.5+420×0.5=1650,
即水稻种1.5亩,花生种0.5亩时所得到的利润最大.
7. 思路分析:可以把a、b分别看成横坐标和纵坐标,根据不等式组画出可行域,然后求目标函数9x-y的最大值和最小值.
解:问题转化为在约束条件下,目标函数z=9a-b的取值范围.
画出可行域如下图所示的四边形ABCD及其内部.
由,解得得点A(0,1).
当直线9a-b=t通过与可行域的公共点A(0,1)时,
使目标函数z=9a-b取得最小值为zmin=9×0-1=-1.
由解得得点C(3,7).
当直线9a-b=t通过与可行域的公共点C(3,7)时,
使目标函数z=9a-b取得最大值为zmax=9×3-7=20.
∴9a-b的取值范围是[-1,20].
8. 思路分析:本题考查逆向思维、数形结合的思想方法,利用图形的特性和规律,解决数的问题或将图形信息转换成代数信息,削弱或清除形的推理部分,使要解决的形问题转化为数量关系的讨论.
解:直线z=ax+y(a>0)是斜率为-a,y轴上的截距为z的直线族,从题图可以看出,当-a小于直线AC的斜率时,目标函数z=ax+y(a>0)取得最大值的最优解是(1,4);当-a大于直线AC的斜率时,目标函数z=ax+y(a>0)取得最大值的最优解是(5,2);
只有当-a等于直线AC的斜率时,目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,线段AC上的所有点都是最优解.直线AC的斜率为-,所以a=时,z的最大值为×1+4=.
9. 思路分析:本题可以使用线性规划的基本思路,像二元一次不等式所示的区域一样,我们仍然可以用“线定界,点定域”的方法来确定9x2-16y2+144≤0所表示的平面区域.
解:(1)将原点坐标代入9x2-16y2+144,其值为144>0,因此9x2-16y2+144≤0表示的平面区域如图所示的阴影部分,即双曲线-=1的含有焦点的区域.
(2)设P(x,y)为该区域内任意一点,由上图可知,当P与双曲线的顶点(0,±4)重合时,|OP|取得最小值4.所以,x2+y2=|OP|2=16.
(3)取Q(2,0),则直线PQ的斜率为k=,其直线方程为y=k(x-2),代入9x2-16y2+144=0得(9-16k2)x2+64k2x-64k2+144=0,由Δ=0得k=±,
由图可知k≥或k≤-.
故所求的取值范围是(-∞,- ]∪[,+∞).