普陀区 2018 学年度第二学期期末六年 量研级质调
数 学 试 卷 2019.6
(时间90分钟,满分100分)
题 号 一 二 三 四 总 分
得 分
考生注意:1.本卷含四个大试 题,共27题;
……………………………………………… 2.除第一、二大外题 ,其余各如无特别明题 说 ,都必写出解的主要步须 题
______________ 线
○
姓名 骤.
一.单项选择题(本大共有题 6题,每题2分,满分12分)
_________ 1.下列法中说 ,正确的是 ···························································································· ( )
学号
(A)一个数的相反数等于个数本身的数只有这 0;
………………………………… (B)一个数的平方等于个数本身的数只有这 0;
__________ ……
班级 ○ (C)一个数的倒数等于个数本身的数有这 0和?1;
(D)一个数的 等于个数本身的数一定是正数绝对值 这 .
2.已知地球与月球的距离约为384000千米,数据384000用科学数法表示正确的是记
··········································································································································· ( )
3 4 4
(A) ?10384 ; (B) . ?10843 ; (C) . ?10438 ; (D)
______________________
_
5
学校 ……………………………………封 . ?10843 .
…
○ 3.如果 ?ba ?0,那么下列不等式中不成立...的是 ·················································· ( )
22
(A) ? ?ba ?22 ; (B)? ??22 ba ; (C) ?ba ?0; (D) ?ba .
……………密 4.下列射线 ?
OA中,表示北偏西30 方向的是 ························································· ( )
北 A 北 A 北
……… 北
30° A 30° A
30°第 1 页 共 7 页 30°
O O O O
(A); (B); (C); (D).
5.如图1,在长方体ABCD-EFGH中,如果把面BCGF与面ABFE组 图成的形看作直立于
面ABCD上的合型折页 纸,那么可以明说 ································································ H G( )
E
(A)棱EA ?平面EFGH; (B)棱BF?平面ABCD; D F C
(C)棱GF?平面ABFE; (D)棱EF?平面BCGF. A B
图1
6.如果关于x的不等式x?m≥0的最小整数解是2,那么m的取范是值围 ···· ( )
(A)1≤m?2; (B)1?m≤2; (C)2?m≤3; (D)2≤m?3.
二.填空题(本大共有题 12题,每题3分,满分36分)
1
7. 的相反数是 __________.
3
8.计算:1.4+2.6?? ?= __________.
2
9.比大小较 :? ?8 __________?4 .(填“>”“<”或“=”)
?x?2,
10.如果? 是方程 ? yax ?7的一个解,那么a的等于值 __________.
?y??3
11.如果将方程 ? yx ?104 变形为用含x的式子表示y,那么y ?__________.
12. 由8x?315x? 移项,得 ? xx ??1538 .在此形中变 ,方程两同加上的式子是边时
________.
13.某种商品的零售价为150元,因季原因商家按零售价打节 8折售销 ,仍能利获 10%,
问这种商品的成本价是多少元?设这种商品的成本价为x元,可列出方程
___________________.
第 2 页 共 7 页
14.如果点C在段线 AB上,且点C不与点A、B重合,那么AB __________BC.(填“>”
或“<”)
15.计算: ? ? ?5432'2334 ? ? __________.
16.如图2,在方体长 ABCD-EFGH中,棱BF与棱DH的位置关系是__________.(填“平
行”、“相交”或“异面”)
17.如图3,如果?AOB?? ??AOC 90 ,?AOB?? ? ?AOD 180 ,那么
C
?DOC ?________?. B
D
H G
O A
E D F C 图3
A B
图2
18.如图 4,在数上轴 点 P、点 Q 所表示的数分别是?17和 3,点 P 以每秒 4 个位度单长
的速度,点Q 以每秒3个位度的速度单长 ,同时沿数轴向右运动.经过 秒,点
P、点Q分别与原点的距离相等.
P Q
-17 0 3
图4
三.简题答 (本大共有题 5题,每题5分,满分25分)
? 9 3?
19.计算 2 2019
:? . 51430 )( ? ? ????? ? ?? 1)( .
?25 5?
4 xx ?13
20.解方程: ? ?2.
3 4
第 3 页 共 7 页
?53x y??18,
21.解方程组:?
?x??3 6.y
?xy z??32 ?11,
?
22.解方程组:?xyz??3 3? ,
??23xz??2.
?517x? ?≤2(2)x ,
?
23.解不等式组:?21x x? ?31
? ? .
? 3 2
第 4 页 共 7 页
四.解答题(本大共有题 4题,第24题6分,第25题6分,第26题7分,第27题8分,
满分27分)
24.已知:线段AB(如图5).
(1)按照目要求作题 图(或画图),保留作痕迹图 ,不要求写出作法和结论.
①用直尺和 作出段圆规 线 AB的中点C;
②延长AB到点M,使BM=2AB.
(2)在(1)的形中图 ,如果CM?5cm,那么AB ?_______cm.
A B
图5
25.一名球 在一比中投与 共投中了篮队员 场赛 篮罚篮计 15个球得32分,其中两分球一共
得14分.(在球比中篮 赛 ,投中一个三分球得3分,投中一个两分球得2分,罚中一个球
得1分)
(1)这篮队员名球 投中了_______个两分球.
(2)这篮队员名球 投中了几个三分球,罚中了几个球?
第 5 页 共 7 页
26.如图6,已知∠AOC=30°,射线OB在∠AOC的外部.
(1)按照目要求题 作图(或画图),保留作痕迹图 ,不要求写出作法和结论.
______________ ①画射线OD,使∠AOD与∠AOC互补,且射线OC在∠AOD的内部;
姓名
②用直尺和 作出圆规 ∠BOC的平分线OE.
(2)在(1)的形中图 ,如果∠BOE=?2x?15??,∠DOE=?x?60??,求∠COE的度数.
_________
学号
A
C
__________
班级
O B
图6
______________________
_
学校
27.2019 年 2 月《上海市生活垃圾管理条例》正式出台,其中定生活垃圾分可回收规 为
物、有害垃圾、湿垃圾、干垃圾四类.某校由六、七两个年共级 17名同学成了组 “垃圾分
类宣传”志愿者小队,他 本校每天的生活垃圾收集情况行 后们对 进调查统计发现:
第 6 页 共 7 页
①由于宣到位传 ,学校在每天生活垃圾的重量比原来每天现 400千克下降了20%;
1
②其中可回收物重量和干垃圾重量之和占在每天生活垃圾重量的现 ,可回收物中废纸
2
占70%;
③由于部分同学干垃圾的 不够清楚对 认识还 ,因此,发现 还干垃圾中有20%的废纸;
④可回收物中的废纸与干垃圾中的 合在一起共重废纸 82千克.
根据上述信息回答下面的问题:
(1)学校在每天生活垃圾重量是多少千克现 ?
(2)学校在每天的可回收物和干垃圾各多少千克现 ?
(3)回收 1 吨废纸,大可以少砍约 17 棵大树,“垃圾分类宣传”志愿者小中的部分成队 员
计划每天放学后开展将干垃圾中的废纸清理出来的活动,已知六、七年每个学生级 清理
干垃圾的效率分别为3千克/5分钟、5千克/5分钟,问 员 动如何分配人参与活 ,恰好5分
钟将所有干垃圾清理完毕?(两个年均要有学生参加级 )
第 7 页 共 7 页
普陀区 2018 学年度第二学期期末六年级数学质量调研
参考答案及评分说明 2019.6
一、单项选择题(本大题共6题,每题2分,满分12分)
1.(A); 2.(D); 3.(B); 4.(C); 5.(B); 6.(B).
二、填空题(本大题共12题,每题3分,满分36分)
1
7. ? ; 8. -1.2; 9. >;
3
10. 5; 10 5?x? x? 12. ?3x;
11. ?或 ? ?;
4 ? 24?
13.x(1+10%)=150×0.8; 14.>; 15.67°17′;
16.平行; 17.90; 18.2或20.
三、简答题(本大题共有5题,每题5分,满分25分)
? 9 3?
19.方法一:解:原式=? ?250 ? ??? ? ???? 1 ·········································· (3分)
?25 5?
? ?9 3
=? ??25 ? ???? ? ??1
? ?25 5
= ????? 1159 ?························································ (1分)
=?25. ··································································· (1分)
? 9 15?
方法二:解:原式= ]250[ ? ??? ? ?? )1( ···································· (3分)
?25 25?
24
= )25( ???? )1(
25
=? ? ? )1(24 ························································· (1分)
=?25.·································································· (1分)
1
20.解:去分母,得 ? xx ? ?24)13(316 . ·················································· (1分)
去括号,得 ? xx ? ?243916 . ····················································· (1分)
移项,得 ? xx ?? ?243916 . ······················································ (1分)
化简,得 x?217 . ····································································· (1分)
解得 x?3. ··············································································· (1分)
所以,原方程的解是x?3.
??5x y??318,①
21.方法一:?
??xy??3 6. ②
解:由①-②,得 ?xx ? ?6185 . ················································· (1分)
解得 x?3. ··············································································· (1分)
将x?3代入②,得 ? y ?633 . ···················································· (1分)
解得 y ?1. ··············································································· (1分)
?x? ,3
所以,原方程的解是组 ? ······················································ (1分)
?y? .1
方法二:
解:由②,得 ? ?36 yx .③ ······················································· (1分)
将③代入①,得 ? ? yy ?183)36(5 . ············································ (1分)
解得 y ?1. ··············································································· (1分)
将y ?1代入③,解得 x?1. ························································· (1分)
?x? ,3
所以,原方程的解是组 ? ······················································ (1分)
?y? .1
2
?x y z???3 211,①
??
22.解:?xyz???3 3, ②
?
?232.xz?? ③
?
由①+②,得 ? zx ?1432 .④ ························································· (1分)
由③+④,得 x?164 ,································································· (1分)
解得 x?4. ··············································································· (1分)
把x?4代入○3,得z ?2. ····························································· (1分)
把x?4,z ?2代入①,得 y?1. ·················································· (1分)
?x?4,
?
所以,原方程的解是组 ?y?1,
??z?2.
?5x x? ?172(2)≤ ,①
?
23.解:?2131x x? ?
? ? . ②
? 3 2
由①,得 x≤7.
由②,得 x??1. ······································································· (2+1分)
不等式①、②的解集在数上表示轴 为:
-1 0 1 7
······························································································· (1分)
所以,原不等式的解集是组 ?1? x≤7. ············································ (1分)
【说明】在解不等式的程中组过 ,有一个错误,另一个正确的情况下,得2分.
四、解答题(本大题共有4题,第24题6分,第25题6分,第26题7分,第27题8分,满分27
分)
3
24.(1)①作正确图 ,标注点C ································································ (2分)
②作图或画图正确,标注点M ····················································· (2分)
(2)2 ······························································································ (2分)
【说明】作正确图 ,但没有作痕迹只扣图 1分
25.(1)7 ····························································································· (1分)
(2)方法一:
解:设这篮队员名球 投中了x个三分球,罚中了y个球. ················· (1分)
?3x???14 32,y
根据意题 ,可列方程组? ······································· (2分)
?x y???7 15.
?x?5,
解得? ··············································································· (2分)
?y?3.
答:这篮队员名球 投中了5个三分球,罚中了3个球.
方法二:
解:设这篮队员名球 投中了x个三分球,罚中了(8-x)个球. ·············· (1分)
根据意题 ,可列方程 ? ?xx ? ?3214)8(3 . ··································· (2分)
解得x?5. ·············································································· (1分)
当x?5时, ?x?38 (个). ······················································ (1分)
答:这篮队员名球 投中了5个三分球,罚中了3个球.
26.(1)①画正确图 ··············································································· (1分)
②作正确图 ················································································ (2分)
?
(2)由OE是∠BOC的平分线,得 ∠COE=∠BOE=? ?2x?15 . ··················· (1分)
由∠AOD=∠AOC+∠COE+∠DOE,得 ? ? ?xx ? ?1506015230 . ······ (1分)
4
解得 x?25. ········································································· (1分)
所以,∠COE=35°. ····································································· (1分)
【说明】作正确图 ,但没有作痕迹只扣图 1分.
27.解:(1)400?(120%)=320? . ························································· (1分)
答:学校在每天生活垃圾重量是现 320千克.
(2)设学校在每天的可回收物现 x千克,干垃圾y千克.
? 1
?x?? ?y 320 ,
根据意题 ,可列方程组? 2 ··································· (2分)
?
?70%20% 82.x y? ?
?x?100,
解得 ? ······································································· (2分)
?y ?60.
答:学校在每天的可回收物现 是160千克,干垃圾60千克.
(3)设六年级有a名学生,七年级有b名学生参加活动.
由意题 ,得 3a?560b? .······················································· (1分)
?a ?15,?a ?10,?a ?5,
符合方程的正整数解是:? ? ? ······················· (1分)
?b?3;?b?6;?b?9.
因为六、七两个年级组成的“垃圾分类宣传”志愿者小队只有17名同学,
?a ?15,
所以, ? 不合意题 ,舍去. ··········································· (1分)
?b?3.
答:六年级有 10 名学生,七年级有 6 名学生参加活动;或六年级有 5 名学生,七
年级有9名学生参加活动.
5