比赛场次
教材分析:
“比赛场次”?这一题材在生活中比较常见。组合问题的解决与前面其他问
题的思想方法不同,教材中尚不出现计算公式,而采用列表或画图这样的直观方式,让学生去经历这样一种思维过程,有利于培养学生思维的逻辑性和条理性。通过对比赛场次的研究,不仅使学生了解体育比赛中常见的数学问题,加深对周围事物的理解,而且提高了学生解决实际问题的能力,培养了学生应用数学的意识。
二、学情分析
“比赛场次”的问题在三年级下学期时学生有过初步接触,当时球队数限制在4支以内,引导学生用画图或列表的方法来解决问题。本内容是在上述基础上的进一步发展,主要借助解决“比赛场次”的实际问题,引导学生通过列表、画图发现规律,体会解决问题的策略。
三、教学目标:
1、结合体育中的实例,探索比赛中的搭配问题,会用列表、画图的方式,寻找实际问题中蕴涵的简单的规律,体会图、表的简洁性和有效性。
2、了解“从简单的情形开始寻找规律”的解决问题的策略,提高解决问题的能力。
3、通过比赛场次问题的解决,感受数学与现实生活的密切联系,培养学生的综合应用意识。
四、教学重、难点:
重点:学会用列表、画图的方式“从简单的情形开始寻找规律”的方法。
难点:发现规律并用语言描述。
五、教学过程:
(一)、复习迁移,经验的激活
1、直接揭题。
我们知道生活中处处有数学,其实体育中也处处有数学,今天这节课,我们就一起来研究体育中的比赛问题。
2、板书课题:比赛场次
3、回忆旧知:
我们学过的解决问题的策略有哪些?
生:列表格、画线段图、找单位“1”、列举法、找数量关系式、添辅助线……
板书:解题策略:列表、画图、连线、列举
我们今天学的内容,就要用到这些解题的策略。
(二)、应用旧知,经验的冲突
1、提出问题
我们学校乒乓球社团有30名同学进行乒乓球比赛,每两名同学之间要进行一场比赛,一共要比赛多少场?
师:每两名人之间要进行一场比赛,就是体育中经常讲到的单循环赛。
师:你能尝试用我们已经学过的方法来解决这个问题吗?
2、交流反馈
你能很快清楚地知道一共要比赛多少场吗?你遇到了什么问题?
有些同学感觉无从下手。
出示学生作品(展台)
过渡语:我们解题的最高境界就是复杂问题简单化。30名同学进行乒乓球比赛,我们不能很快清楚地看出比赛的场次,我们该怎么做呢?
生:我们可以先从2名同学参加比赛开始研究。
师:对,我们就从简单的情形入手,找找有什么规律。
师:2名同学参加比赛,要进行一场比赛。能很清楚地看出比赛的场次。为什么? 那3名同学参加呢?(ppt演示)
A、列表法:
如果用画“√”比赛一场,交流在哪些格子画“√”,哪些格子不画“√”,弄清为什么?
B、画图法:
展示画法,并交流用什么代表人数(点),用什么代表比赛场次(两点之间的连线表示两名同学之间的一场比赛)。
强调:?在数时要做到:有顺序、不重复、不遗漏。
(三)、寻找规律,经验的生成
1、4人、5人……呢,要比赛多少场?请用你喜欢的方式完成它。
2、画一画
相互交流发现的规律,集体反馈
师:你得到了什么规律? 比赛人数和比赛场次之间有什么样的关系呢?
强调比赛人数要在前面人数的基础上加几,为什么要加这个数?
3、说一说
问:什么数相加?从几开始加?加到什么数为止?
归纳规律:连续自然数相加,从1开始加到队员数减1为止
4、如果有10名同学呢?要比赛多少场?
1+2+3+4+5+6+7+8+9=45(场)
5、n名同学呢?
1+2+3+4+…+(n-1)
6、回到我们学校乒乓球社团有30名同学进行乒乓球比赛,每两名同学之间要进行一场比赛,一共要比赛多少场?
你还有其他发现吗?
1+2+3+4+…+(n-1)=(n-1)
2
生:就是等差数列的公式。
师:对,当人数很多的,或更多的时候,1+2+3+4+……,还是会很麻烦。所以,我们得出这是求一组等差数列的和。用等差数列的规律来求和更简洁、方便。
30名同学,一共要比赛多少场?
30×(30-1)÷2=435(场)
7、课堂回顾:想一想,我们是怎样解决比赛场次这个问题的?
师小结:从简单情形开始,借助画图、列表来寻找规律,利用规律通过计算来解决问题,这是我们解决问题经常用到的方法。
以后遇到生活中的类似问题,我们就可以用今天学到的知识来解决。下面我们就来个学以致用。
(四)、应用规律,经验的升华
1、如果10名同学参加乒乓球比赛,比赛结束后,每两名同学握一次手,一共握了几次手?
2、有8个车站,一共有多少种不同的票价?
3、平面内有12个点,每两点之间连一条线段,可以连多少条线段?
独立完成上面的3题,纠错交流。
4、想一想,画一画
社团乒乓球队为联络方便,设计了一种联络方式。一旦有事,先由教练同时通知两位队长,这两位队长再分别同时通知两名同学,依此类推,每人再同时通知两个人。每同时通知两人共需1分。
(1)、理解同时通知的含义。
(2)、你能图表示出联络方式吗?
(3)、你发现了什么规律?
每增加1分钟,增加的人数是前一次通知人数的2倍。
现在通知到的同学数比前一分通知到的同学数的2倍还多2人。
(4)、如果有126名同学,需要多长时间通知完?
2+4+8+16+32+64=126(名)
62×2+2=126(名)
需要6分钟时间通知完。
(五)、拓展练习
来一道高难度的。
挑战题:99999×99999=?
(六)、课堂小结
1、学了今天这节课,你有什么收获?
2、师小结:在问题比较复杂的情况下,运用直接画图或列表难以解决,且包含某中规律时,我们就采取“从简单的情形开始,找出规律,算出结果”的策略。
(七)、板书设计
比赛场次
? ?? ?? ?? ?? 解题?策略:列举、画图、连线、表格
? ?? ?? ?? ?? ?要做到:有顺序、不重复、不遗漏
? ?? ?? ?? ?? 技巧:从简单的情形开始,找出规律,算出结果。
? ?? ?? ?? ? 单循环赛: 1+2+3+……+(n-1)= (n-1)
2
(八)、教学反思
比赛场次是在体育赛中常见的问题,只是让学生初步了解组合一项赛事,应怎样计算单循环赛的场次,逐步培养学生应用数学方法推理归纳出数学知识的内在规律。
1、体会数学知识源于生活。教材上提供的“乒乓球比赛”,正好我们学校的社团活动中有乒乓球社团一项,所以,我决定把它改成“我们学校乒乓球社团举行乒乓球比赛……”教学内容源于学生生活,学生整节课兴致盎然,积极性很高。
2、学生是学习真正的主人,只有学生自主地参与到学习中,学生的学习才切实有效。课堂中要尽量给足学生探究的时间和空间,让他们亲身去经历、去感受、去实践,只有这样学生才能学会更好的思考更好的学习。
教材中是安排10名同学参加乒乓球比赛的情况,为了使学生体验更充分让他们自发的产生探究的愿望,教学中我又补充了30名同学参加乒乓球比赛的情况,通过大量的动手操作获得一些感悟从而找出规律,调动自主学习的积极性。