2020秋九年级数学上册第二十五章概率初步教案学案(打包11套)(新版)新人教版

文档属性

名称 2020秋九年级数学上册第二十五章概率初步教案学案(打包11套)(新版)新人教版
格式 zip
文件大小 949.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-07-28 08:28:03

文档简介

第1课时
用直接列举法或列表法求概率
学习目标:
知识与技能
掌握用列表法求事件的概率.
过程与方法
通过对“应用一般的列举法求概率”的探究,体会获得事件发生的概率的方法,培养分析、判断的能力。
情感、态度与价值观
通过分析探究事件的概率,培养学生良好的动脑习惯,提高用数学的意识,激发学习兴趣
重点:用列举法求事件的概率
难点:选择恰当的方法分析事件的概率
学习过程:
一、自主学习
(一)复习巩固
1、投掷一个骰子,观察向上一面的点数,求下列事件的概率.
(1)点数为2;
(2)点数为奇数;
(3)点数大于2小于5.
2、文具盒中有4支铅笔,3支圆珠笔,1支钢笔,下列说法表述正确的是


A.P(取到铅笔)=
B.P(取到圆珠笔)=
C.P(取到圆珠笔)=
D.P(取到钢笔)=1
(二)自主探究
1、一项广告称:本次抽奖活动的中奖率为20%,其中一等奖的中奖率为1%,小王看到广告后细想,20%=1/5
,那么我抽5张就会有一张中奖,抽100张就会有一张
中一等奖,你对小王的想法有何看法?
2、某商场设立了一个可以自由转动的转盘,如下图所示,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪个区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:
转动转盘的次数n
100
150
200
500
800
1000
落在铅笔的次数m
68
111
136
345
564
701
落在铅笔的次数m/n
(1)请填表;(2)假如你去转动该转盘一次,你获得铅笔的概率是多少?
(3)该转盘中,表有铅笔区域的扇形的圆心角大约是多少?(精确到1度)
(三)、归纳总结:
当A是必然发生的事件时,P(A)=
------------------------。
当B是不可能发生的事件时,P(B)=
--------------------。
当C是随机事件时,P(C)的范围是-----------------------
(四)自我尝试:
1、有一只小狗在如下图所示的地板上随意地走动,若小狗最后停留在某一个方砖内部,这只小狗最终停在黑色方砖上的概率是多少?
二、组内交流
1、组内成员互助学习,共同提高。
2、整理组内未能
解决的问题。
三、组间交流
各组间互问互答,师生共同攻克难关。
www.xkb1.com
四、应用拓展
1、投掷一枚骰子,出现点数不超过4的概率约是
2、一次抽奖活动中,印发奖券10
000张,其中一等奖一名奖金5000元,那么第一位抽奖者,(仅买一张)中奖概率为
3、设计一个两人参加的游戏,使游戏双方公平;
4、设计一个两人参加的游戏,使一方获胜的概率为1/4,另一方获胜的概率为3/4.
X|k
|b|
1
.
c|o
|m
五、归纳小结
本节课应掌握运用列举法或列表法求事件的概率.
六、目标测试
一)填空题
1.从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是_____.
2.一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性_____.
3.小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中_____的可能性较小.
w
w
w
.x
k
b
1.c
o
m
4.3张飞机票2张火车票分别放在五个相同的盒子中,小亮从中任取一个盒子决定出游方式,则取到_____票的可能性较大.
5.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是_____.
6.在线段AB上任三点x1、x2、x3,则x2位于x1与x3之间的可能性_____(填写“大于”、“小于”或“等于”)x2位于两端的可能性.
二)选择题
7.一个口袋内装有大小和形状相同的一个白球和两个红球,从中任取一个球,得到白球,这个事件是(
)
A.必然事件
B.随机事件
C.不可能事件
D.不能确定
8.有5个人站成一排,“小亮站在正中间”与“小亮站在两端”这两个事件发生的可能性
(
)
A.相等
B.不相等
w
w
w
.x
k
b
1.c
o
m
C.有时相等,有时不等
D.不能确定
9.从一副扑克牌中任取一张摸到大王与摸到小王的可能性(
)
A.相等
B.不相等
C.有时相等,有时不等
D.无法确定
10.某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,任何人都有同样的当选机会,下列叙述正确的是(
)
A.男生当选与女生当选的可能性相等
B.男生当选的可能性大于女生当选的可能性
C.男生当选的可能性小于女生当选的可能性
D.无法确定
11.8个足球队中有2个强队,现将这8个队任意分成两组,每组4个队进行比赛,对两个强队是否在同一组的可能性大小叙述正确的是(
)
A.两个强队在同一组与不在同一组的可能性大小相同
B.在同一组的可能性较大
C.不在同一组的可能性较大
D.无法确定
可乐
铅笔
PAGE
1第二十五
概率初步
25.1
随机事件与概率
25.1.1
随机事件
自学目标:
1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
重、难点:
随机事件的特点并能对生活中的随机事件作出准确判断。
自学过程:
一、课前准备:
1.在一定条件下必然发生的事件,叫做
;在一定条件下不可能发生的事件,叫做
;在一定条件下可能发生也可能不发生的事件,叫做

2.下列问题哪些是必然发生的?哪些是不可能发生的?
(1)太阳从西边下山;
(2)某人的体温是100℃;
(3)a2+b2=-1(其中a,b都是实数);
(4)水往低处流;
(5)酸和碱反应生成盐和水;
(6)三个人性别各不相同;
(7)一元二次方程x2+2x+3=0无实数解。
3.什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?
二、自主探究:
活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题:
(1)抽到的序号是0,可能吗?这是什么事件?
(2)抽到的序号小于6,可能吗?这是什么事件?
(3)抽到的序号是1,可能吗?这是什么事件?
(4)你能列举与事件(3)相似的事件吗?
活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。请考虑以下问题,掷一次骰子,观察骰子向上的一面:
(1)出现的点数是7,可能吗?这是什么事件?
(2)出现的点数大于0,可能吗?这是什么事件?
(3)出现的点数是4,可能吗?这是什么事件?
(4)你能列举与事件(3)相似的事件吗?
(1)上述两个活动中的两个事件(2)怎样的事件称为随机事件呢?
(3)与必然事件和不可能事件的区别在哪里?
三、巩固新知:
1.下列事件是必然发生事件的是(

(A)打开电视机,正在转播足球比赛
(B)小麦的亩产量一定为1000公斤
(C)在只装有5个红球的袋中摸出1球是红球
(D)农历十五的晚上一定能看到圆月
2.下列事件中是必然事件的是
(
)
A.早晨的太阳一定从东方升起
B.安阳的中秋节晚上一定能看到月亮
C.打开电视机正在播少儿节目
D·小红今年14岁了她一定是初中生
3.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破
(
)
A.可能性很小
B.绝对不可能
C.有可能
D.不太可能
4.下列各语句中是必然事件的是
(
)
A.两个分数相加和一定是整数
B.两个分数相乘积一定是整数
C.两个互为相反数的和为0
D.两个互为相反数的积为0
5.下列说法正确的是
(
)
A.可能性很小的事件在一次实验中一定不会发生
B.可能性很小的事件在一次实验中一定发生
C.可能性很小的事件在一次实验中有可能发生
D.不可能事件在一次实验中也可能发生
6.下列事件:
A.袋中有5个红球,能摸到红球
B.袋中有4个红球,1个白球,能摸到红球
C.袋中有2个红球,3个白球,能摸到红球
D.袋中有5个白球,能摸到红球
问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?
7.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;
(2)刘翔再次打破110米栏的世界纪录;
(3)打靶命中靶心;
(4)掷一次骰子,向上一面是3点;
(5)13个人中,至少有两个人出生的月份相同;
(6)经过有信号灯的十字路口,遇见红灯;
(7)在装有3个球的布袋里摸出4个球
(8)物体在重力的作用下自由下落。
(9)抛掷一千枚硬币,全部正面朝上。
四、尝试小结:
PAGE
225.3
用频率估计概率
学习目标:
1.
理解用频率来估计概率的方法;
2.
了解概率的实验背景及其现实意义.
学习重点:
通过对事件发生的频率的分析来估计事件发生的概率
学习难点:
合理设计模拟试验,分析频率稳定值从而得到该事件的概率
学习过程:
一、自主学习
1、在生产的100件产品中,有95件正品,5件次品。从中任抽一件是次品的概率为(
).
A.0.05
B.0.5
C.0.95
D.95
2、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?(用两种不同方法求解)
二、合作学习
1.实验:
小组合作完成教材P140实验,并记录在下表中:
实验次数n
50
100
150
200
250
300
350
400
450
500
正面向上的频数m
正面向上的频率
描点:
思考:
(1)分析上面图像可以得出频率随着实验次数的增加,稳定于
左右.
(2)从试验数据看,硬币正面向上的概率估计是
(3)根据推理计算可知,抛掷硬币一次正面向上的概率应该是
结论:
对于一般的随机事件,在大量重复试验时,随着实验次数的增加,一件事件出现的频率,总在一个
数的附近摆动,我们就可以用这个数去估计此事件的概率。
归纳:
一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数p,那么事件A发生概率的概率

P(A)=
p
通常我们用频率估计出来的概率是一个近似值,即概率约为p。
2、运用:
P143问题1:某林业部门要考察某种幼树在一定条件的移植成活率,就采用什么具体做法?
某林业部门要考查某种幼树在一定条件的移植成活率.
(1)它能够用列举法求出吗?为什么?
(2)它应用什么方法求出?
(3)请完成下表,并求出移植成活率.
移植总数(n)
成活数(m)
成活的频率()
10
8
0.80
50
47
____
270
235
0.871
400
369
____
750
662
____
1500
1335
0.890
3500
3203
0.915
7000
6335
_____
900
8073
_____
14000
12628
0.902
由上表可以发现,幼树移植成活的频率在
左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为

四、拓展训练
问题2、某水果公司以2元/千克的成本新进了10000千克的柑橘,如果公司希望这种柑橘能够获得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.
柑橘总质量()/千克
损坏柑橘质量()/千克
柑橘损坏的频率()
50
5.50
0.110
100
10.50
0.105
150
15.50
_____
200
19.42
_____
250
24.25
_____
300
30.93
_____
350
35.32
_____
400
39.24
_____
450
44.57
_____
500
51.54
_____
四、小结
1、弄清一种关系——频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
2、了解一种方法——用多次试验频率去估计概率
3、体会一种思想——用样本去估计总体;用频率去估计概率
五、作业
1.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求概率是用(
).
A.通过统计频率估计概率
B.用列举法求概率
C.用列表法求概率
D.用树形图法求概率
2.
在抛一枚均匀硬币的实验中,如果没有硬币,则下列可作为替代物的是(

A.一颗均匀的骰子
B.瓶盖
C.图钉
D.两张扑克牌(1张黑桃,1张红桃)
3.
不透明的袋中装有3个大小相同的小球,其中2个为白色球,另一个为红色球,每次从袋中摸出一个球,然后放回搅匀再摸,研究恰好摸出红色小球的机会,以下替代实验方法不可行的是


A.用3张卡片,分别写上“白”、“红”,
“红”然后反复抽取
B.用3张卡片,分别写上“白”、“白”、“红”,然后反复抽取
C.用一枚硬币,正面表示“白”,反面表示“红”,然后反复抽取
D.用一个转盘,盘面分:白、红两种颜色,其中白色盘面的面积为红色的2倍,然后反复转动转盘
4.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱。通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么推算出a大约是(
)
A.12
B.9
C.4
D.3
5.下列说法正确的是(
).
A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;
B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;
C.彩票中奖的机会是1%,买100张一定会中奖;
D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,
6.
2011年8月,某书店各类图书的销售情况如下图:
某书店2011年8月各类图书销售情况统计图
(1)这个月数学书与自然科学书销售量的比是多少?
(2)这个月总共销售了多少图书?
(3)数学书占了总销售量的百分之多少?
(4)四种类型的书籍中哪一种所占的百分比最大?哪一种最小呢?
六、学习反思
正面向上的频率
1
0.5
试验次数n
50
100
150
200
250
300
350
400
450
500……
PAGE
4第2课时
用树状图求概率
教学目标
1.让学生在具体情境中了解概率的意义,运用画树状图来计算简单事件发生的概率。
2.通过实验获得事件发生的频率,知道大量重复实验时频率可作为事件发生概率的估计值。
3.通过实例进一步丰富对概率的认识,并能解决一些实际问题。
教学重点
让学生在具体情境中了解概率的意义,并运用画树状图来计算简单事件发生的概率。
教学难点
让学生通过实验丰富对概率的认识,并能解决一些实际问题。
教学流程
一、创设情境,让学生在具体情境中体会概率的意义。
请班上王华同学与蒋波同学做掷硬币的游戏。
(游戏规则)任意掷一枚均匀的硬币两次,如果两次朝上的面相同,那么蒋波获胜;如果两次朝上的面不同,那么王华获胜。
先让同学猜一猜,这游戏公平吗?
二、合作交流,作出合理判断。
活动一:掷硬币游戏。
1.与同桌做20次上面的掷硬币游戏,记录每次出现的情况。
2.汇总全班同学的记录,完成下表。
可能出现的情况
……
合计
出现的次数
占总次数的百分比
3.根据上面的数据,你认为这个游戏公平吗?
随意掷出一枚均匀的硬币两次,硬币落地后会出现4种结果:
(1)两次都为正面朝上,记作(正,正)。
(2)第一次为正面朝上,第二次为反面朝上,记作(正,反)。
(3)第一次为反面朝上,第二次为正面朝上,记作(反,正)。
(4)两次都为反面朝上,记作(反,反)。
每种结果出现的概率相等,都是。即:
P(正,正)=P(正,反)=P(反,正)=P(反,反)=
在上面的游戏中,还有其他的方法帮助我们列出所有可能出现的结果吗?
教师引导学生得出“树状图”表示所有可能出现的结果。
每种结果的概率都是。
活动二:穿衣游戏。
(一名同学实验,其余同学小组讨论,得出答案。)
陶志明同学春节外出旅游时带了3件上衣(棕色、蓝色、淡黄色各一件)和2条长裤(白色、蓝色各一条)。
问题:他任意拿出1件上衣和1条长裤穿上,正好是棕色上衣和蓝色长裤的概率是多少?
学生充分讨论,并出示参考解法。
解:用A、B、C分别代表棕色、蓝色、淡黄色上衣;用D、E分别代表白色、蓝色长裤。
列出所有可能结果的“树状图”
每种结果出现的概率都相等,因此,陶志明拿出棕色上衣和蓝色长裤的概率是。
还有其他方法吗?
三、小结。
今天你们学到了什么?你们还想了解什么?下课后兴趣相同的同学可以组成小组继续研究,好吗?
四、板书设计。

(正,正)
掷第一次
掷第二次
所有可能出现的结果
开始





(正,反)
(反,正)
(反,反)
开始
A
C
D
B
E
D
E
(A、D)
(A、E)
(B、D)
(B、E)
(C、D)
(C、E)
D
E
开始
D
E
A
B
C
A
B
C
(A、D)
(B、D)
(C、D)
(A、E)
(B、E)
(C、E)
活动一:
问题一:……
解:树状图
树状图
活动二:
问题:……
解:树状图25.1.2
概率
自学目标:
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
2.在具体情境中了解概率的意义
3.让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.
重、难点:
1.在具体情境中了解概率意义.
2.对频率与概率关系的初步理解
自学过程:
一、课前准备:
1、当A是必然事件时,P(A)=

当A是不可能事件时,P(A)=

任一事件A的概率P(A)的范围是

2.事件发生的可能性越大,则它的概率越接近________;反之,事件发生的可能性越小,
则它的概率越接近_________.
3、一般地,在大量重复试验中,如果
,那么这个常数p就叫做事件A的概率,记作

4、在上面的定义中,m、n各代表什么含义?的范围如何?为什么?
5.下列事件中哪些事件是随机事件?哪些事件是必然事件?哪些是不可能事件?
(1)抛出的铅球会下落
(2)某运动员百米赛跑的成绩为2秒
(3)买到的电影票,座位号为单号
(4)x2+1是正数
(5)投掷硬币时,国徽朝上
6.频率与概率有什么区别与联系?
二、自主学习:
1.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
转动转盘的次数n
100
150
200
500
800
1000
落在“铅笔”的次数m
68
111
136
345
564
701
落在“铅笔”的频率
(1)计算并完成表格;
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
2.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率
0.58
0.64
0.58
0.59
0.605
0.601
(1)请估计:当n很大时,摸到白球的频率将会接近______;
(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;
(3)试估算口袋中黑、白两种颜色的球各有多少只?
三、达标检测:
1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是______.
2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为______.
3.袋中有5个黑球,3个白球和2个红球,摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为______.
4.袋子中装有24个黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?(要判断哪一个概率大,只要看哪一个可能性大.)
5.设计如下游戏:将转盘分为A、B、C区域(如图所示)转动转盘一次,指针在A区域小王得40分,小明失40分,指针在B区域,小王失60分,小明得60分,指针在C区域,小王失30分,小明得30分,这一游戏对小王有利吗?
四、尝试小结:
PAGE
3第二十五
概率初步
25.1
随机事件与概率
25.1.1
随机事件
自学目标:
1.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
2.历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。
重、难点:
1.对随机事件发生的可能性大小的定性分析
2.理解大量重复试验的必要性。
自学过程:
一、课前准备:
1.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出1个小球,请你写出这个摸球活动中的一个随机事件_________________.
2.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性______摸到J、Q、K的可能性.(填“<,>或=”)
3.下列事件为必然发生的事件是(
)
(A)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1
(B)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数
(C)打开电视,正在播广告
(D)抛掷一枚硬币,掷得的结果不是正面就是反面
4.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是(
)
(A)点数之和为12
(B)点数之和小于3
(C)点数之和大于4且小于8
(D)点数之和为13
5.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(
)
(A)抽出一张红心
(B)抽出一张红色老K
(C)抽出一张梅花J
(D)抽出一张不是Q的牌
6.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a、抽到一名住宿女生;
b、抽到一名住宿男生;
c、抽到一名男生.其中可能性由大到小排列正确的是(
)
(A)cab
(B)acb
(C)bca
(D)cba
一、自主探究:
1、袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B。
(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?
(2)“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?
(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?
(4)通过上述试验,你认为,要判断同一试验中哪个事件发生可能性的较大,必须怎么做?
三、反馈练习
1.从一幅扑克牌中,任意抽取一张,抽到的可能性较小的是
(
)
A.黑桃
B.红桃
C.梅花
D.大王
2.小红花2元钱买了一张彩票,你认为小红中大奖的可能性
(
)
A.一定
B.很可能
C.可能
D.不大可能
3.在不透明的袋装中有999个白球和1个红球,它们除颜色外其余都相同.
从袋中随意摸出一个球,则下列说法中正确的是(
)
A.“摸出的球是白球”是必然事件
B.“摸出的球是红球”是不可能事件
C.摸出白球的可能性不大
D.摸出的球有可能是红球
4.200张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码
是3的倍数的可能性哪个大?
5.80件产品中,有50件一等品,20件二等品,10件三等品,从中任取一件,取到哪种产品的可能性最大?取到哪种产品的可能性最小?为什么?
6、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?
7、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多?
8、已知地球表面陆地面积与海洋面积的比均为3:7。如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?
四、尝试小结:
PAGE
1第二十五
概率初步
25.1
随机事件与概率
25.1.1
随机事件
教学目标:
知识技能目标
了解必然发生的事件、不可能发生的事件、随机事件的特点.
数学思考目标
学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表
象中,提炼出本质特征并加以抽象概括的能力.
解决问题目标
能根据随机事件的特点,辨别哪些事件是随机事件.
情感态度目标
引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.
教学重点:
随机事件的特点.
教学难点:
判断现实生活中哪些事件是随机事件.
教学过程
<活动一>
【问题情境】
摸球游戏
三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.
游戏规则
每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.
【师生行为】
教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.
学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.
教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.
【设计意图】
通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.
<活动二>
【问题情境】
指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?
1.通常加热到100°C时,水沸腾;
2.姚明在罚球线上投篮一次,命中;
3.掷一次骰子,向上的一面是6点;
4.度量三角形的内角和,结果是360°;
5.
经过城市中某一有交通信号灯的路口,遇到红灯;
6.某射击运动员射击一次,命中靶心;
7.太阳东升西落;
8.人离开水可以正常生活100天;
9.正月十五雪打灯;
10.宇宙飞船的速度比飞机快.
【师生行为】
教师利用多媒体课件演示问题,使问题情境更具生动性.
学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.
教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.
【设计意图】
引领学生经历由实践认识到理性认识再重新认识实践问题的过程,
同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.
<活动三>
【问题情境】
情境1
5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.
情境2
小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.
在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.
【师生行为】
学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.
【设计意图】
开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.
<活动四>
【问题情境】
请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.
【师生行为】
教师引导学生充分交流,热烈讨论.
【设计意图】
随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.
<活动五>
【问题情境】
李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.
【师生行为】
教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.
【设计意图】
有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.
<活动六>
【问题情境】
归纳、小结
布置作业
设计一个摸球游戏,要求对甲乙公平.
【师生行为】
学生反思、讨论.
学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.
【设计意图】
课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.






现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.
做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.25.1.2
概率
教学目标:
〈一〉知识与技能
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
2.在具体情境中了解概率的意义
〈二〉教学思考
让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.
〈三〉解决问题
在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.
〈四〉情感态度与价值观
在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
【教学重点】在具体情境中了解概率意义.
【教学难点】对频率与概率关系的初步理解
【教具准备】壹元硬币数枚、图钉数枚、多媒体课件
【教学过程】
一、创设情境,引出问题
教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.
学生:抓阄、抽签、猜拳、投硬币,……
教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)
追问,为什么要用抓阄、投硬币的方法呢?
由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大
在学生讨论发言后,教师评价归纳.
用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.
质疑:那么,这种直觉是否真的是正确的呢?
引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.
说明:现实中不确定现象是大量存在的,
新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.

、动手实践,合作探究
1.教师布置试验任务.
(1)明确规则.
把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.
(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”
的频数及
“正面朝上”的频率,整理试验的数据,并记录下来..
2.教师巡视学生分组试验情况.
注意:
(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.
(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.
3.各组汇报实验结果.
由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.
提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.
在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,
引导他们小组合作,进一步探究.
解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.
4.全班交流.
把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.
表25-2
抛掷次数
50
100
150
200
250
300
350
400
450
500
“正面向上”的频数
“正面向上”的频率
想一想1(投影出示).
观察统计表与统计图,你发现“正面向上”的频率有什么规律?
注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.
想一想2(投影出示)
随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?
在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5.
这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.
说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.
为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近
.
其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).
表25-3
试验者
抛掷次数(n)
“正面朝上”次数(m)
“正面向上”频率(m/n)
棣莫弗
2048
1061
0.518
布丰
4040
2048
0.5069
费勒
10000
4979
0.4979
皮尔逊
12000
6019
0.5016
皮尔逊
24000
12012
0.5005
通过以上学生亲自动手实践,电脑辅助演示,历史材料展示,
让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.
在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.
5.下面我们能否研究一下“反面向上”的频率情况?
学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.
教师归纳:
(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.
(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.
说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.
三、评价概括,揭示新知
问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?
学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.
通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.
归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.
那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),
记作P(A)=
p.
注意指出:
1.概率是随机事件发生的可能性的大小的数量反映.
2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
想一想(学生交流讨论)
问题2.频率与概率有什么区别与联系?
从定义可以得到二者的联系,
可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础.
当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.
四.练习巩固,发展提高.
学生练习
1.书上P143.练习.1.
巩固用频率估计概率的方法.
2.书上P143.练习.2
巩固对概率意义的理解.
教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.
五.归纳总结,交流收获:
1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.
2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.
【作业设计】
(1)完成P144
习题25.1
2、4
(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.
【教学设计说明】
这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.
1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.
贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.
2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.
3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.
0.5
1
正面向上的频率
投掷次数n
100
50
250
150
500
450
300
350
200
图25.1-1第2课时
用树状图求概率
教学目标:1.
学习用树形图法计算概率。2.并通过比较概率大小作出合理的决策。
重点:会运用树形图法计算事件的概率。
难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
导学过程:
1.自主学习
自学教材P152—P153的例6、学习三个及三个以上因素求概率的方法——树形图
例6:
甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。从三个口袋中各随机地取出1个球。
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?
(2)取出的三个球上全是辅音字母的概率是多少?
此题与前面两题比较,要从三个袋子里摸球,即涉及到3个因素。此时用列表法就不太方便,可以尝试树形图法。
2、巩固练习
假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中有两只雄鸟的概率是多少?
3.学以致用:
经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。三辆汽车经过这个十字路口,求下列事件的概率:
①三辆车全部继续前行;
②两辆车向右转,一辆车向左转;
③至少有两辆车向左转。
4、深化提高
把三张形状、大小相同但画面不同的风景图片都平均剪成三段,然后带上、中、下三段分别混合洗匀。从三堆图片中随机地各抽出一张,求着三张图片恰好组成一张完整风景图片的概率。
课堂小结:
当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。运用树形图法
求概率的步骤如下:
①画树形图

②列出结果,确定公式P(A)=中m和n的值;
③利用公式P(A)=计算事件概率。
PAGE
225.2 用列举法求概率
第1课时 运用直接列举或列表法求概率
1.用列举法求较复杂事件的概率.
2.理解“包含两步并且每一步的结果为有限多个情形”的意义.
3.用列表法求概率.
                   
一、情境导入
希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.
二、合作探究
探究点一:用列表法求概率
【类型一】摸球问题
一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是(  )
A.
B.
C.
D.
解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:
1
2
1
(1,1)
(1,2)
2
(1,2)
(2,2)
由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2,
2),∴P=,故选D.
【类型二】学科内综合题
从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.
解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:
0
1
2
0
——
(0,1)
(0,2)
1
(1,0)
——
(1,2)
2
(2,0)
(2,1)
——
共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是=,故答案为.
方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.
【类型三】学科间综合题
如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是(  )
A.0.25
B.0.5
C.0.75
D.0.95
解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:
灯泡1发光
灯泡1不发光
灯泡2发光
(发光,发光)
(不发光,发光)
灯泡2不发光
(发光,不发光)
(不发光,不发光)
  根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P(至少有一个灯泡发光)=,故选择C.
方法总结:求事件A的概率,首先列举出所有可能的结果,并从中找出事件A包含的可能结果,再根据概率公式计算.
【类型四】判断游戏是否公平
甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一球,标号是1的概率;
(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.
解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.
解:(1)P(标号是1)=.
(2)这个游戏不公平,理由如下:
把游戏可能出现标号的所有可能性(两次标号之
和)列表如下:
第一次和第二次
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6
  ∴P(和为偶数)=,P(和为奇数)=,二者不相等,说明游戏不公平.
方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.
三、板书设计
教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.25.3
用频率估计概率
【教材分析】
《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。概率与人们的日常生活密切相关,应用十分广泛。纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】
根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:
知识目标:
1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。
方法与过程目标:
1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.
2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.
情感态度与价值观目标:
1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】
重点:1.体会用频率估计概率的必要性和合理性。
2.学会依据问题特点,用频率来估计事件发生的概率。
难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。
【学生分析】
学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】
树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
【设计理念】
激发学生的学习兴趣,发展学生的数学才能,在教学过程中充分运用启发和讨论方式,发扬教学民主,关注知识的形成和发展过程,创设情境,培养学生用数学的眼光看世界的意识,发展搜集和处理信息的能力,运用所学的数学知识解释生活中发生的某些现象,从中建立起数学模型,抽象为数学问题,探究和发展其中的变化规律。
【教师准备】
《问题导读---评价单》、《问题生成---评价单》、《问题训练---评价单》
【教学过程的设计】
问题情境
师生行为
设计意图
创设情境,引入新课  1、从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张.(1)用列举法列举所有可能出现的结果;
(2)求摸出的两张牌的牌面数字之和不小于5的概率. 2、袋子中装有蓝、白、红三个球,从中摸出一个再放回去,共摸三次,摸到三个红色球,摸到两个蓝色球、一个红色球,摸到一个蓝色球、一个红色球、一个白色球的概率各是多少?画树形图说明3、在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?探索新知,讲授新课想一想,做一做
某林业部门要考查某种幼树在一定条件的移植成活率,应采用什么具体做法?请补出表中的空缺,并完成表后的填空.移植总数(n)  成活数(m)  成活频率(
)  10  8  0.80  50  47  270  235  0.871  400  369  750  662  1500  1335  0.890  3500  3203  0.915  7000  6335  9000  8073  14000  12628  0.902从表可以发现:幼树移植成活的频率在_________左右摆动,并且随着统计数据的增加,这种规律愈加越明显,所以估计幼树移植成活率的概率为________。新知应用,加深理解
例1、某水果公司以2元/千克新进了10000千克柑橘,如果公司希望这些柑橘能够获得税前利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?柑橘总质量(n)/千克  损坏柑橘质量(m)/千克  柑橘损坏的频率(
)  50  5.50  0.110  100  10.50  0.105  150  15.15  200  19.42  250  24.25  300  30.93  350  35.32  400  39.24  450  44.57  500  51.54分析:(1)从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.  (2)根据表中数据填空:完好柑橘的质量为
千克,完好柑橘的实际成本为______
元/千克,总价为______元/千克,  (3)柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以2元/千克的成本进了10000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利5000元,那么售价应定为_______元/千克比较合适.,例2、一个学习小组有6名男生3名女生,老师要从小组的学生中先后随机的抽取3人参加几项测试,并且每名学生都可以被重复抽取,你能设计一种实验来估计:“被抽取的3人中有2名男生1名女生”的概率吗?巩固训练,拓展提高1、某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重
2.5千克,第二网捞出25条,称的平均每条鱼重2.2千克,第三网捞出35条,称的平均每条鱼重2.8千克,试估计这池塘中鱼的重量。2、王老汉为了与客户签订购销合同,对自己的鱼塘中的鱼的总质量进行估计.第一次捞出100条鱼,称得质量约为184㎏,并将每条鱼都做上记号,在回鱼塘中.当它们混合与鱼群后,又捞出200条,称得质量为416㎏,且有记号的鱼有20条.(1)请你估计一下,鱼塘中的鱼有多少条?★(2)请你计算一下,鱼塘中的鱼的总质量大约是多少㎏?轻松过关发放《问题训练评价单》,让学生独立完成其练习题小结归纳,课堂延伸通过这堂课的学习你有什么收获?知道了哪些新知识?学会了做什么
上课之前先检查学生对《问题导读评价单》的完成情况将学生分组,然后由小组长发放《问题生成评价单》,然后小组根据评价单中的问题进行讨论,交流。然后由组长进行汇总,选出小组代表进行发言我们一起来完成这个结论的证明先让学生进行小组合作交流,再进行全班性的问答或交流。教师组织学生讨论,提问学生,师生互动.  在此活动中老师应重点关注学生:  ①能否积极主动地合作交流.教师质疑,引导学生思考。学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:  1、学生在老师的要求下是否能动手计算。  2、学生能否自己思考、解答、发言。归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.教师提出问题,学生之间通过充分交流、讨论、探究。  教师组织学生分析本问题如何解决,如何分析,如何用样本的概率估计总体的概率  教师设计填空题引导学生完成大题的解答。学生设计实验,用摸取卡片代替实际抽取学生,这样称模拟实验。学生独立完成,教师巡视过程中注意个别指导。学生动手解题,教师通过投影评讲答案。让两个同学板书生独立完成问题评价单中的练习题,老师进行讲评,主要培养学生独立解题能力学生畅所欲言,从知识、方法、情感态度等方面谈收获,谈体会,并结合本节教学目标,发现在学习中学会了什么,还存在哪些问题
使学生巩固所学知识,并为新课作铺垫。通过提出问题,激发学生的兴趣。通过练习熟练掌握频率的计算。试验次数很大时频率逐渐稳定,所以用频率估计概率。  通过问题的设置实现将知识向能力的转化。通过问题的设置实现将知识向能力的转化。  通过例题的讲解,使学生理解“随机数”的概念,初步掌握用频率估计概率.  帮助学生理解,降低难度。学生自己解决问题,使学生对问题发生兴趣,唤起他们的求知欲,使课堂效果大大提高。综合应用,巩固提高的问题,因此设计该分层推进的补充题,对本节课所学内容分进行检测总结、归纳学习内容,培养全面分析问题的良好习惯,并培养学生语言归纳能力.