23.1
图形的旋转
第2课时
旋转作图及变换
教学内容
选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.
教学目标
理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.
复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.
重难点、关键
1.重点:用旋转的有关知识画图.
2.难点与关键:根据需要设计美丽图案.
教具、学具准备
小黑板
教学过程
一、复习引入
1.(学生活动)老师口问,学生口答.
(1)各对应点到旋转中心的距离有何关系呢?
(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?
(3)两个图形是旋转前后的图形,它们全等吗?
2.请同学独立完成下面的作图题.
如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.
(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.
二、探索新知
从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30°的旋转图形.
因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
例1.如下图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.
分析:只要以O为旋转中心、旋转角以上面为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可.
解:(1)连结OA
(2)以O点为圆心,OA长为半径旋转45°,得A.
(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.
(4)按菊花一叶图案画出各菊花一叶.
那么所画的图案就是绕O点旋转后的图形.
例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,请同学画出图案,它还是原来的菊花吗?
老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.
三、巩固练习
教材P65
练习.
四、应用拓展
例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.
分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.
解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;
(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;
(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A′G′、G′D′、D′H′、H′A′;
(4)所作出的图案就是所求的图案.
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;
2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.
六、布置作业
1.教材P67
综合运用7、8、9.
1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.
2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.
3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.23.2.2
中心对称图形
学习目标
1.经历观察图形的过程,建立中心对称图形的概念,会判断一个图形是不是中心对称图形。2.通过动手操作,总结找中心对称图形对称中心的方法,发展归纳、总结的能力,积累问题的能力。
学习重点
中心对称图形的概念及其他运用
学习难点
中心对称图形性质的灵活运用
教学准备
激趣明标
本节课我们来学习一种具有特殊性质的图形,它们是一个图形经过旋转180°后旋转形成的图形,到底它们是怎样的呢?让我们一起来认识吧!
自主学习
1.作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.
∵AO=OC,BO=OD,∠AOB=∠COD
∴△AOB≌△COD
∴AB=CD
也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形
,那么这个图形叫做
,这个点就是它的对称中心2.举出学过的哪些几何图形是中心对称图形3.课前准备一些精美的中心对称图形,用图片给予展示。
合作展示
如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,求折痕EF的长.
学生通过自主学习,共同展示各个小组对以上内容的学习。教师给予适当的鼓励和点评。
当堂测试
一、选择题
1.下列图形中,既是轴对称图形,又是中心对称图形的是(
)
A.等边三角形
B.等腰梯形
C.平行四边形
D.正六边形
2.下列图形中,是中心对称图形,但不是轴对称图形的是(
).
A.正方形
B.矩形
C.菱形
D.平行四边形
3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是(
)A.21085
B.28015
C.58012
D.51082二、填空题
1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.
2.请你写出你所熟悉的三个中心对称图形_________.
3.中心对称图形具有什么特点(至少写出两个)_____________.三、解答题
1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.
(1)判断下列命题的真假(在相应括号内填上“真”或“假”)
①等腰梯形是旋转对称图形,它有一个旋转角为180°;(
)
②矩形是旋转对称图形,它有一个旋转角为180°;(
)
(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)
①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.
2.如图,将矩形A1B1C1D1沿EF折叠,使B1点落在A1D1边上的B处;沿BG折叠,使D1点落在D处且BD过F点.
(1)求证:四边形BEFG是平行四边形;(2)连接BB,判断△B1BG的形状,并写出判断过程.
3.如图,直线y=2x+2与x轴、y轴分别交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1.
(1)在图中画出△A1OB1;
(2)设过A、A1、B三点的函数解析式为y=ax2+bx+c,求这个解析式.
提升小结
通过本节课的学习你有什么收获?把你的收获与全班同学分享。你还有什么问题吗?教师点评各小组的学习表现。
补充完善
D
E
C
B
A
B
A
PAGE
323.1
图形的旋转
第1课时
图形的旋转及性质
教学内容
1.什么叫旋转?旋转中心?旋转角?
2.什么叫旋转的对应点?
教学目标
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
重难点、关键
1.重点:旋转及对应点的有关概念及其应用.
2.难点与关键:从活生生的数学中抽出概念.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1、2两题有什么共同特点呢?
共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A、B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.
(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?
(2)请画出旋转中心和旋转角.
(3)指出,经过旋转,点A、B、C、D分别移到什么位置?
(老师点评)
(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.
最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.
三、巩固练习
教材P65
练习1、2、3.23.2.3
关于原点对称的点的坐标
课题
23.2.3关于原点对称的点的坐标
课型(课时)
新授(第3课时)
策划者
审核者
导学者
学习时间
学习者
班级
九年级
学习目标
能运用中心对称的知识猜想并验证关于原点对称的点的坐标的性质。利用该对称性质在平面直角坐标系内关于原点对称的图形,形成观察、分析、探究用合作交流的学习习惯,体验事物的变化之间是有联系的。
学习重点
平面直角坐标系中关于原点对称的点的坐标的关系及其应用。
学习难点
关于原点对称的点的坐标性质及其运用它解决实际问题.
教学准备
激趣明标
自主学习
如图23-74,在直角坐标系中,已知A(-3,1)、B(-4,0)、C(0,3)、D(2,2)、E(3,-3)、F(-2,-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?
提示:画法:(1)连结AO并延长AO
(2)在射线AO上截取OA′=OA
(3)过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″.
∵△AD′O与△A′D″O全等
∴AD′=A′D″,OA=OA′
∴A′(3,-1)同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.讨论:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?归纳:
例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.分析:要作出线段AB关于原点的对称线段,只要作点A、点B关于原点的对称点A′、B′即可。
合作展示
例2.如图,直线AB与x轴、y轴分别相交于A、B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.
(1)在图中画出直线A1B1.
(2)求出线段A1B1中点的反比例函数解析式.(3)是否存在另一条与直线AB平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等)它与双曲线只有一个交点,若存在,求此直线的函数解析式;若不存在,请说明理由.
分析:(1)只需画出A、B两点绕点O顺时针旋转90°得到的点A1、B1,连结A1B1.
(2)先求出A1B1中点的坐标,设反比例函数解析式为y=代入求k.(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A1B1与双曲线是相切的,只要我们通过A1B1的线段作A1、B1关于原点的对称点A2、B2,连结A2B2的直线就是我们所求的直线.
当堂测试
一、选择题1.下列函数中,图象一定关于原点对称的图象是(
)
A.y=
B.y=2x+1
C.y=-2x+1
D.以上三种都不可能2.如图,已知矩形ABCD周长为56cm,O是对称线交点,点O到矩形两条邻边的距离之差等于8cm,则矩形边长中较长的一边等于(
)
A.8cm
B.22cm
C.24cm
D.11cm二、填空题1.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P′的坐标是P′_______.2.写出函数y=-与y=具有的一个共同性质________(用对称的观点写).三、综合提高题1.如图,在平面直角坐标系中,A(-3,1),B(-2,3),C(0,2),画出△ABC关于x轴对称的△A′B′C′,再画出△A′B′C′关于y轴对称的△A″B″C″,那么△A″B″C″与△ABC有什么关系,请说明理由.2.如图,直线AB与x轴、y轴分别相交于A、B两点,且A(0,3),B(3,0),现将直线AB绕点O顺时针旋转90°得到直线A1B1.
(1)在图中画出直线A1B1;
(2)求出过线段A1B1中点的反比例函数解析式;
(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线斜率k相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.
提升小结
补充完善
3
_
3
-
_
3
-
_
_
O
_
B
_
A
_
C
_
-
2
_
-
2
_
1
_
-
1
_
y
_
x
_
3
_
-
4
_
D
_
4
_
2
_
2
_
1
_
-
1
两个点关于原点对称时,它们的坐标符号
,即点P(x,y)关于原点O的对称点P′(
,
).
A
B
A
B
C
E
D
PAGE
323.1
图形的旋转
学习目标
1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.让学生感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题
学习重点
旋转及对应点的有关概念及其应用
学习难点
从活生生的数学中抽出概念
教学准备
小黑板
三角尺
激趣明标
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.
(3)什么叫轴对称图形?
自主学习
自学教材56页内容并思考:1、你能举出生活中与旋转现象有关的例子吗?2、它们是怎样旋转的,你能类比平移的定义概况出旋转的定义吗?自学检测:1、在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2、△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达△ACE的位置.
(1)旋转中心是哪一点?旋转了多少度?
(2)如果M是AB的中点,那么经过上述旋转后,点M旋转到了什么位置?
合作展示
1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?
2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.
(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?
(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?
当堂测试
一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有(
).
A.6个
B.7个
C.8个
D.9个2.从5点15分到5点20分,分针旋转的度数为(
).
A.20°
B.26°
C.30°
D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于(
).A.70°
B.80°
C.60°
D.50°
(1)
(2)
(3)
二、填空题.1.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是_____.2.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是____;(2)旋转角度是____;(3)△ADP是______三角形.三、综合提高题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.
(4)
(5)
(6)
如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.
回答下列问题
提升小结
旋转的概念:在平面内将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.平移与旋转的异同。
补充完善
PAGE
323.1
图形的旋转
旋转作图及变换
教学内容
1.对应点到旋转中心的距离相等.
2.对应点与旋转中心所连线段的夹角等于旋转角.
3.旋转前后的图形全等及其它们的运用.
教学目标
理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.
先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.
重难点、关键
1.重点:图形的旋转的基本性质及其应用.
2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.
教学过程
一、复习引入
(学生活动)老师口问,学生口答.
1.什么叫旋转?什么叫旋转中心?什么叫旋转角?
2.什么叫旋转的对应点?
3.请独立完成下面的题目.
如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?
(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.
二、探索新知
上面的解题过程中,能否得出什么结论,请回答下面的问题:
1.A、B、C、D、E、F到O点的距离是否相等?
2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?
3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?
老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2.∠AOA′,∠BOB′,∠COC′有什么关系?
3.△ABC与△A′B′C′形状和大小有什么关系?
老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.
2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作和刚才作的(3),得出
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.
分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.
解:(1)连结CD
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD
(3)在射线CE上截取CB′=CB
则B′即为所求的B的对应点.
(4)连结DB′
则△DB′C就是△ABC绕C点旋转后的图形.
例2.如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)AF的长度是多少?
(4)如果连结EF,那么△AEF是怎样的三角形?
分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.△ABF与△ADE是完全重合的,所以它是直角三角形.
解:(1)旋转中心是A点.
(2)∵△ABF是由△ADE旋转而成的
∴B是D的对应点
∴∠DAB=90°就是旋转角
(3)∵AD=1,DE=
∴AE==
∵对应点到旋转中心的距离相等且F是E的对应点
∴AF=
(4)∵∠EAF=90°(与旋转角相等)且AF=AE
∴△EAF是等腰直角三角形.
三、巩固练习
教材P64
练习1、2.
四、应用拓展
例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.
分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.
解:∵四边形ABCD、四边形AKLM是正方形
∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°
∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的
∴BK=DM
五、归纳小结(学生总结,老师点评)
本节课应掌握:
1.对应点到旋转中心的距离相等;
2.对应点与旋转中心所连线段的夹角等于旋转角;
3.旋转前、后的图形全等及其它们的应用.23.3
课题学习
图案设计
教学内容
课题学习──图案设计
教学目标
利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.
通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.
重难点、关键
1.重点:设计图案.
2.难点与关键:如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
(学生活动)请同学们独立完成下面的各题.
1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答,AB与CD有什么位置关系.
2.如图,已知线段CD,作出线段CD关于对称轴L的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?
3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?
老师点评:
1.AB与CD平行且相等;
2.过D点作DE⊥L,垂足为E并延长,使ED′=ED,同理作出C′点,连结C′D′,则CD′就是所求的.CD的延长线与C′D′的延长线相交于一点,这一点在L上并且CD=C′D′.
3.以D点为旋转中心,旋转后CD⊥C′D′,垂足为D,并且CD=C′D.
二、探索新知
请用以上所讲的平移、轴对称、旋转等图形变换中的一种或组合完成下面的图案设计.
例1.(学生活动)学生亲自动手操作题.
按下面的步骤,请每一位同学完成一个别致的图案.
(1)准备一张正三角形纸片(课前准备)(如图a)
(2)把纸片任意撕成两部分(如图b,如图c)
(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形.
(4)并将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c)保持不动)
(5)把如图(d)平移到如图(c)的右边,得到如图(e)
(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.
老师必要时可以给予一定的指导.
三、巩固练习
教材P78
活动1.
四、应用拓展
例2.(学生活动)请利用线段、三角形、矩形、菱形、圆作为基本图形,绘制一幅反映你身边面貌的图案,并在班级里交流展示.
老师点评:老师点到为止,让学生自由联想,老师也可在黑板上设计一、二图案.
五、归纳小结
本节课应掌握:
利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.
六、布置作业
1.教材P78
活动2
P80
综合运用4、5、6、7.
2.选用作业设计.
作业设计
一、选择题
1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是(
)
2.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是(
)
二、填空题
1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.
2.如上右图,是由________关系得到的图形.
三、综合提高题
1.(1)图案设计人员在进行图设计时,常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?
(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,并说明你所表达的意义.23.1图形的旋转
教学目标
知
识与技
能
1、掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换.2、经历探索图形旋转特征的过程,体验和感受图形旋转的主要特征,理解图形旋转的基本性质.
过
程与方
法
通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力、以及与他人合作交流的能力.
情
感与态
度
经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神.
重
点
旋转的有关概念和旋转的基本性质
难
点
探索旋转的基本性质
教学流程安排
活动流程图
活动内容和目的
活动1:创设情境,导入新课活动2:演示导学,形成概念活动3:举例应用,加深认识活动4:课堂练习,巩固提高活动5:归纳小结,布置作业
通过折纸游戏,导入本课旋转的概念及探究旋转的基本性质通过例题,加深知识的理解通过练习,增强知识的运用学生归纳小结,形成系统.
教
学
过
程
设
计
问题与情境
师生行为
设计意图
活动一
创设情境
导入新课1、手工制作:制作一个小风车.2、欣赏日常生活中部分物体的旋转现象.
学生制作后,结合欣赏的图片,思考:在这些运动中有哪些共同特征?本次活动中,教师应重点关注:(1)学生参与的全面性;(2)学生观察实例的角度;(3)学生活动后,试着描述出旋转的定义.
通过小制作,图形欣赏,导入主题,调动学生的主观能动性,激发好奇心和求知欲.
活动二
演示导学
形成概念1、观察:时钟上分针的运动.(动画演示)问题:时钟上分针的转动是绕哪一个点转动?沿着什么方向转动?从5分到15分转动了多少角度.
学生在观察后,回答问题,然后教师讲解:把一个图形绕着某一个点O转动一个角度的图形变换叫做旋转,点O叫旋转中心,转动的角叫旋转角.
通过观察,使学生形象、直观地理解旋转的有关概念.
教
学
过
程
设
计
问题与情境
师生行为
设计意图
2、动手做一做:在一张半透明的薄纸与另一张纸片之间垫上一张复写纸,在薄纸上画ΔABC,并在ΔABC外面找一点0,再用一枚图钉在0处穿过.将薄纸绕点0旋转一个角度,再次把ΔABC复印在纸片上,并记成ΔA?B?C?.在纸片上分别连接0A、0B、0C、0A?、0B?、0C?.问题:(1)根据所画的图形,用直尺量出OA与OA?、OB与OB?、OC?的大小;用量角器量出∠AOA?、∠BOB?、∠COC?的度数,观察这三个角的大小,并指出旋转中心,旋转角.
学生在老师的指导下,动手操作,并动手完成老师交给的任务.学生交流讨论并归纳出旋转的性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连结的线段的夹角等于旋转角.(3)旋转前、后的图形全等.
课件演示及学生的动手操作,培养了学生观察能力和探究问题的能力、动手能力,以及与他人合作交流的能力,充分体现了教师为主导,学生为主体的教学思想,同时也突出了重点,突破难点.
教
学
过
程
设
计
问题与情境
师生行为
设计意图
(2)说出其中的对应点,对应角和对应线段.(3)旋转后图形的形状和大小是否发生变化.
本次活动中,教师应重点关注:(1)旋转的基本性质的探究过程应循序渐进,即演示→观察→猜想→讨论→归纳.(2)要给学生充足的时间和空间.
活动三
举例应用
加深认识1、如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把ΔADE顺时针旋转90°,画出
旋转后的图形.
A
D
EB
C
学生动手练习,教师及时展示学生练习结果,并及时给予点评.
通过例题讲解,让学生加深对新知识的理解,培养学生分析问题和解决问题的能力.
教
学
过
程
设
计
问题与情境
师生行为
设计意图
2、分析香港特别行政区的区徽图中的图形的旋转现象.
学生思考后,展示结果.本次活动中,教师应重点关注:(1)学生画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据.(2)学生中作图的不同方法.
通过图形欣赏让学生感受数学图形的魅力,激发学生兴趣.
活动四
课堂练习
巩固提高1、P64页练习2、图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有(
)A、2个
B、3个C、4个
D、5个
学生单独完成后及时反馈,教师及时点评.
通过练习,让学生再次明确旋转的主要因素,从而让学生在知识不断重视的基础上加深理解,形成能力,实现本课的知识目标.
教
学
过
程
设
计
问题与情境
师生行为
设计意图
3、P65页练习
本次活动中,教师应重点关注:(1)点评的针对性、典型性;(2)给学生相对充足的时间与空间.
活动五
归纳小结
布置作业(1)本节课你有什么收获?(2)布置作业P66页T3、T7
学生交流获得的知识和感受,教师聆听,并与学生交流.本次活动中,教师应重点关注:(1)学生概括的是否全面,教师应及时补充;(2)不同层次对知识的掌握的程度.
通过小结,概括出本节课的知识与方法.体验探究过程中的感受.23.2.3
关于原点对称的点的坐标
教学内容
两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点为P′(-x,-y)及其运用.
教学目标
理解P与点P′点关于原点对称时,它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用.
复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.
重难点、关键
1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用.
2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
(学生活动)请同学们完成下面三题.
1.已知点A和直线L,如图,请画出点A关于L对称的点A′.
2.如图,△ABC是正三角形,以点A为中心,把△ADC顺时针旋转60°,画出旋转后的图形.
3.如图△ABO,绕点O旋转180°,画出旋转后的图形.
老师点评:老师通过巡查,根据学生解答情况进行点评.(略)
二、探索新知
(学生活动)如图23-74,在直角坐标系中,已知A(-3,1)、B(-4,0)、C(0,3)、D(2,2)、E(3,-3)、F(-2,-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答:
这些坐标与已知点的坐标有什么关系?
老师点评:画法:(1)连结AO并延长AO
(2)在射线AO上截取OA′=OA
(3)过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″.
∵△AD′O与△A′D″O全等
∴AD′=A′D″,OA=OA′
∴A′(3,-1)
同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.
(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?
提问几个同学口述上面的问题.
老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P(x,y)关于原点O的对称点P′(-x,-y).
例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.
分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′、B′即可.
解:点P(x,y)关于原点的对称点为P′(-x,-y),
因此,线段AB的两个端点A(0,-1),B(3,0)关于原点的对称点分别为A′(1,0),B(-3,0).
连结A′B′.
则就可得到与线段AB关于原点对称的线段A′B′.
(学生活动)例2.已知△ABC,A(1,2),B(-1,3),C(-2,4)利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.
老师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,依次连结,便可得到所求作的△A′B′C′.
三、巩固练习
教材P73
练习.
两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P′(-x,-y).23.3
课题学习
图案设计
学习目标:
【知识与技能】
1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.
2、掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.
【过程与方法】
利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.
【情感、态度与价值观】
经历对日常生活与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.
【重点】
中心对称的性质及初步应用.
【难点】
中心对称与旋转之间的关系.
学习过程:
一、自主学习
1知识回顾
平移、旋转、轴对称变换的基本特征是什么?
2、
已知:图A、图B分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为、(网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.
(1)填空:
的值是__________;
(2)请在图C的网格上画出一个面积为8个平方单位的中心对称图形.
3、如图中的图案是由一个怎样的基本图形
经过旋转、轴对称和平移得到的呢?
请你用基本图形
经过旋转、平移和轴对称
设计一个美丽的图案。
二、教师点拔
1、分析图案的形成过程要注意些什么?
分析图案的形成过程,应注意运用
、
、
进行描述,只要合理就行。
2、图案设计的关键是什么?
选取简单的基本几何图形,然后通过不同的变换组合出美丽的图案;
三、课堂检测
1.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度正确的为(
)
A.
B.
C.
D.
2.将一张正方形纸片沿如图1所示的虚线剪开后,能拼成下列四个图形,其中是中心对称图形的是(
)
3.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是(
)
四、课外拓展
1.用4块如所示的瓷砖拼成一个正方形,使所得正方形(包括色彩因素)分别是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形.画出符合要求的图形各两个.
2.观察下列图案,你能利用图1来分析图2和图3是如何形成的吗?
3.(本题6分)如图,共有7个全等的三角形,你能分析说明第1个三角形经过什么变化可以依次得到其余6个三角形吗?
4.如图,的∠BAC=120?,以BC为边向形外作等边,把绕着D点按顺时针方向旋转60?后到的位置。若,求∠BAD的度数和AD的长.
PAGE
223.2.1
中心对称
学习目标
1.通过旋转作图认识两个图形关于某一点对称(或中心对称)的本质;就是一个图形绕一点旋转180°而成。2.通过作图探索中心对称的两个图形的性质;会利用中心对称的性质作出某一图形成中心对称的图形;会确定对称中心的位置。3.经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,感受生活中的对称美。
学习重点
中心对称的性质及应用。
学习难点
确定对称中心的位置。
教学准备
激趣明标
问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:
1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?
自主学习
如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.
像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形
,那么就说这两个图形关于这个点对称或中心对称,这个点叫做
.
这两个图形中的对应点叫做关于中心的对称点.
例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.
(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.归纳:1.中心对称的两个图形,对称点所连线段都经过
,而且被
所平分.
2.关于中心对称的两个图形是
图形例2.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.
分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到。
合作展示
例3.如衅,在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.
(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积.(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式.
分析:(1)∵BC=4,AC=4
∴△ABC是等腰直角三角形,易得△BDC′也是等腰直角三角形且BC′=1
(2)∵平移的距离为x,∴BC′=4-x学生自主学习,完成例题的学习。请各个小组上台演示解答过程。
当堂测试
一、选择题
1.在英文字母VWXYZ中,是中心对称的英文字母的个数有(
)个.
A.1
B.2
C.3
D.42.下面的图案中,是中心对称图形的个数有(
)个
A.1
B.2
C.3
D.43.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=(
)A.55°
B.125°
C.70°
D.110°二、填空题
三、综合提高题
1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z对称形式
轴对称旋转对称中心对称只有一条对称轴有两条对称轴2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法.
3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.
4.
如衅,在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.
(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积.(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式.
提升小结
谈谈自己对这节课的感受,教师点评各个小组的表现。
补充完善
A
B
A
B
C
E
D
PAGE
423.1
图形的旋转
第2课时
旋转作图及变换
学习目标
1.理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.
2.通过师生互动、合作交流以及动手操作过程,发现旋转变换所蕴含的美,激发学习数学的兴趣。
学习重点
图形的旋转的基本性质及其应用。
学习难点
运用操作实验几何得出图形的旋转的三条基本性质.
教学准备
激趣明标
1.什么叫旋转?什么叫旋转中心?什么叫旋转角?
2.什么叫旋转的对应点?
3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?
(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.
自主学习
上面的解题过程中,能否得出什么结论,请回答下面的问题:
1.A、B、C、D、E、F到O点的距离是否相等?
2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?
3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?
老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2.∠AOA′,∠BOB′,∠COC′有什么关系?
3.△ABC与△A′B′C′形状和大小有什么关系?
合作展示
1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.
2.如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?
3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?
当堂测试
一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于(
)
A.50°
B.210°
C.50°或210°
D.130°2.在图形旋转中,下列说法错误的是(
)
A.在图形上的每一点到旋转中心的距离相等
B.图形上每一点移动的角度相同
C.图形上可能存在不动的点
D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是(
)二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD=_________.3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、综合提高题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?
提升小结
PAGE
123.2
中心对称(1)
教学内容
两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.
教学目标
了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.
复习运用旋转知识作图,旋转角度变化,设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.
重难点、关键
1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.
2.难点与关键:从一般旋转中导入中心对称.
教具、学具准备
小黑板、三角尺
教学过程
一、复习引入
请同学们独立完成下题.
如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,并写出简要作法.
老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.
作法:(1)连结OA、OB、OC、OD;
(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;
(3)分别截取OE=OB,OF=OC;
(4)依次连结DE、EF、FD;
即:△DEF就是所求作的三角形,如图所示.
二、探索新知
问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:
1.以O为旋转中心,旋转180°后两个图形是否重合?
2.各对称点绕O旋转180°后,这三点是否在一条直线上?
老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.
像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.
(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.
(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.
分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,对称中心就是旋转中心.
(3)旋转后的对应点,便是中心的对称点.
解:作法:(1)延长AD,并且使得DA′=AD
(2)同样可得:BD=B′D,CD=C′D
(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.
答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.
(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.
例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD成中心对称的三角形.
分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.
解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B点关于中心D的对称点为C(B′)
(2)连结A′B′、A′C′.
则△A′B′C′为所求作的三角形,如图所示.
三、巩固练习
教材P74
练习2.
23.2
中心对称(2)
教学内容
1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
2.关于中心对称的两个图形是全等图形.
教学目标
理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.
复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.
重难点、关键
1.重点:中心对称的两条基本性质及其运用.
2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.
教学过程
一、复习引入
(老师口问,学生口答)
1.什么叫中心对称?什么叫对称中心?
2.什么叫关于中心的对称点?
3.请同学随便画一三角形,以三角形一顶点为对称中心,画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.
(每组推荐一人上台陈述,老师点评)
(老师)在黑板上画一个三角形ABC,分两种情况作两个图形
(1)作△ABC一顶点为对称中心的对称图形;
(2)作关于一定点O为对称中心的对称图形.
第一步,画出△ABC.
第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.
(1)
(2)
从图1中可以得出△ABC与△A′B′C是全等三角形;
分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.
下面,我们就以图2为例来证明这两个结论.
证明:(1)在△ABC和△A′B′C′中,
OA=OA′,OB=OB′,∠AOB=∠A′OB′
∴△AOB≌△A′OB′
∴AB=A′B′
同理可证:AC=A′C′,BC=B′C′
∴△ABC≌△A′B′C′
(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.
同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.
因此,我们就得到
1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
2.关于中心对称的两个图形是全等图形.
例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.
分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.
解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.
(2)同样画出点B和点C的对称点E和F.
(3)顺次连结DE、EF、FD.
则△DEF即为所求的三角形.
例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).
二、巩固练习
教材P70
练习.
四、归纳小结(学生总结,老师点评)
本节课应掌握:
中心对称的两条基本性质:
1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;
2.关于中心对称的两个图形是全等图形及其它们的应用.
五、布置作业
1.教材P74
复习巩固1
综合运用6、7.
1.下面图形中既是轴对称图形又是中心对称图形的是(
)
A.直角
B.等边三角形
C.直角梯形
D.两条相交直线
2.下列命题中真命题是(
)
A.两个等腰三角形一定全等
B.正多边形的每一个内角的度数随边数增多而减少
C.菱形既是中心对称图形,又是轴对称图形
D.两直线平行,同旁内角相等
3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是(
)
A.60°
B.50°
C.75°
D.55°23.2.2
中心对称
教学内容
1.中心对称图形的概念.
2.对称中心的概念及其它们的运用.
教学目标
了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.
复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.
重难点、关键
1.重点:中心对称图形的有关概念及其它们的运用.
2.难点与关键:区别关于中心对称的两个图形和中心对称图形.
教具、学具准备
小黑板、三角形
教学过程
一、复习引入
1.(老师口问)口答:关于中心对称的两个图形具有什么性质?
(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
关于中心对称的两个图形是全等图形.
2.(学生活动)作图题.
(1)作出线段AO关于O点的对称图形,如图所示.
(2)作出三角形AOB关于O点的对称图形,如图所示.
(2)延长AO使OC=AO,
延长BO使OD=BO,
连结CD
则△COD为所求的,如图所示.
二、探索新知
从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它重合.
上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.
∵AO=OC,BO=OD,∠AOB=∠COD
∴△AOB≌△COD
∴AB=CD
也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.
因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.
老师点评:老师边提问学生边解答.
(学生活动)例2:请说出中心对称图形具有什么特点?
老师点评:中心对称图形具有匀称美观、平稳.
例3.求证:如图任何具有对称中心的四边形是平行四边形.
分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.
证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.
三、巩固练习
教材P72
练习.
四、应用拓展
例4.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,求折痕EF的长.
分析:将矩形折叠,使C点和A点重合,折痕为EF,就是A、C两点关于O点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.
解:连接AF,
∵点C与点A重合,折痕为EF,即EF垂直平分AC.
∴AF=CF,AO=CO,∠FOC=90°,又四边形ABCD为矩形,∠B=90°,AB=CD=3,AD=BC=4
设CF=x,则AF=x,BF=4-x,
由勾股定理,得AC2=BC2+AB2=52
∴AC=5,OC=AC=
∵AB2+BF2=AF2
∴32+(4-x)=2=x2
∴x=
∵∠FOC=90°
∴OF2=FC2-OC2=()2-()2=()2
OF=
同理OE=,即EF=OE+OF=
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.中心对称图形的有关概念;
2.应用中心对称图形解决有关问题.
六、布置作业
1.教材P74
综合运用5
P75
拓广探索8、9