带电粒子在匀强磁场中运动
一:无界磁场中的运动
1、如图所示,一个带负电的粒子以速度v由坐标原点射入磁感应强度为B的匀强磁场中,速度方向与x轴、y轴均成45°。已知该粒子电量为-q,质量为m,则该粒子通过x轴和y轴的坐标分别是多少?
mv/qB -mv/qB
二:有界磁场中的运动 :
1、双界磁场中的运动
2、如图所示,比荷为e/m的电子从左侧垂直于界面、垂直于磁场射入宽度为d、磁感受应强度为B的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度至少应为( B )
A、2Bed/m B、Bed/m C、Bed/(2m) D、Bed/m
3、长为L水平极板间,有垂直纸面向内的匀强磁场,如图4所示,磁感应强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V射入磁场,欲使粒子不打在极板上,可采用的办法是:( AB )
A.使粒子的速度 B.使粒子的速度
C.使粒子的速度 D.使粒子的速度
解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆周运动,很明显,圆周运动的半径大于某值r1时粒子可以从极板右边穿出,而半径小于某值r2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r的最小值r1以及粒子在左边穿出时r的最大值r2,由几何知识得:
粒子擦着板从右边穿出时,圆心在O点,有:
r12=L2+(r1-L/2)2得r1=5L/4,
又由于r1=mv1/Bq得v1=5BqL/4m,∴v>5BqL/4m时粒子能从右边穿出。
粒子擦着上板从左边穿出时,圆心在O'点,有r2=L/4,又由r2=mv2/Bq=L/4得v2=BqL/4m
∴v2综上可得正确答案是A、B。
2、单界磁场中的运动:粒子从同一直线边界射入, 再从这一边界射出时,速度与边界的夹角相等。
4、如图3-6-2所示,在y<0的区域内存在匀强磁场,磁场方向垂直平面并指向纸面外,磁感应强度为B.一带正电的粒子(不计重力)以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ.若粒子射出磁场的位置与O点的距离为,求该粒子的电荷量与质量之比q/m.
解析:洛伦兹力提供向心力Bqv=mv2/r……①
几何关系如图3-6-3所示,l/2=rsinθ……②
整理得q/m=2v0sinθ/lB……③
5、如图11-3-4(a)所示,在x轴上方有匀强磁场B,一个质量为m,带电量为-q的的粒子,以速度v从O点射入磁场,角已知,粒子重力不计,求
(1)粒子在磁场中的运动时间.
(2)粒子离开磁场的位置.
【解析】可引导学生找到其圆心位置,不一定要一步到位,先定性地确定其大概的轨迹,然后由几何关系确定圆心角、弦长与半径的关系.此题中有一点要提醒的是:圆心一定在过O点且与速度v垂直的一条直线上.如图11-3-4(b)
r=mv/Bq,T=2πm/Bq
圆心角为2π-2θ,所以时间t=
离开磁场的位置与入射点的距离即为弦长
s=2rsinθ=2mvsinθ/Bq[ ]
6(2020浙江)利用如图所示装置可以选择一定速度范围内的带电粒子。图中板MN上方是磁感应强度大小为B、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d和d的缝,两缝近端相距为L。一群质量为m、电荷量为q,具有不同速度的粒子从宽度为2d的缝垂直于板MN进入磁场,对于能够从宽度为d的缝射出的粒子,下列说法正确的是
A. 粒子带正电
B. 射出粒子的最大速度为
C. 保持d和L不变,增大B,射出粒子的最大速度与最小速度之差增大
D. 保持d和B不变,增大L,射出粒子的最大速度与最小速度之差增大
解析:由左手定则可判断粒子带负电,故A错误;由题意知:粒子的最大半径、粒子的最小半径,根据,可得、,则,故可知B、C正确,D错误。
3、圆形磁场: 在圆形磁场区域内, 粒子沿径向射入, 必沿径向射出
7、如图所示,半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力),从A点以速度v0垂直磁场方向射入磁场中,并从B点射出,∠AOB=120°,则该带电粒子在磁场中运动的时间为( )
A.2πr/3v0 B.2πr/3v0
C.πr/3v0 D.πr/3v0
解析:首先通过已知条件找到所对应的圆心O′,由图可知θ=60°,得t=,但题中已知条件不够,没有此选项,必须另想办法找规律表示t,
由圆周运动和t= =。其中R为AB弧所对应的轨道半径,由图中ΔOO′A可得R=r,所以t=r×π/3r0,D选项正确。
带电粒子在匀强磁场中做不完整圆周运动的解题思路:
(1)用几何知识确定圆心并求半径.
因为F方向指向圆心,根据F一定垂直v,画出粒子运动轨迹中任意两点(大多是射入点和出射点)的F或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系.
(2)确定轨迹所对的圆心角,求运动时间.
先利用圆心角与弦切角的关系,或者是四边形内角和等于360°(或2)计算出圆心角的大小,再由公式t=T/3600(或T/2 )可求出运动时间.
带电粒子在磁场中运动的多解问题
带电粒子在洛仑兹力作用下做匀速圆周运动的问题一般有多解。形成多解的原因有:
1. 带电粒子电性不确定
受洛仑兹力作用的带电粒子,可能带正电,也可能带负电。当具有相同初速度时,正负粒子在磁场中的运动轨迹不同,导致形成双解。
8、如图所示,第一象限范围内有垂直于XOY平面的匀强磁场,磁感应强度为B。质量为m,电量大小为q的带电粒子在XOY平面里经原点O射入磁场中,初速度V0与x轴夹角600,试分析计算:
(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角多大?
(2)带电粒子在磁场中运动时间多长?
分析:若带电粒子带负电,进入磁场后做匀速圆周运动,圆心为O1,粒子向x轴偏转,并从A点离开磁场。若带电粒子带正电,进入磁场后做匀速圆周运动,圆心为O2,粒子向y轴偏转,并从B点离开磁场。不论粒子带何种电荷,其运动轨道半径均为。如图2,有
X=2Rsin y=2Rsin
带电粒子沿半径为R的圆运动一周所用的时间为T=
(1)若粒子带负电,它将从x轴上A点离开磁场,运动方向发生的偏转角θ1。A点与O点相距
X=2Rsin =
若粒子带正电,它将从y轴上B点离开磁场,运动方向发生的偏转角θ2,B点与O点相距
y=2Rsin =R
(2)若粒子带负电,它从O到A所用的时间为t=
若粒子带正电,它从O到B所用的时间为t=
2. 磁场方向不确定
磁感应强度是矢量。如果题设只给出磁感应强度的大小,而未指出其方向,此时要考虑磁感应强度方向不确定而形成多解。
9、一电子在匀强磁场中,以一固定的正电荷为圆心做匀速圆周运动,磁场方向垂直于运动平面,电场力恰好是洛仑兹力的3倍,设电子电量为e,质量为m,磁场的磁感应强度为B,则电子转动的角速度可能是:( AC )
A.4Be/m B.3Be/m
C.2Be/m D.4Be/m
分析:依题中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种可能方向相反。在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛仑兹力的方向也是相反的。
当负电荷所受的洛仑兹力与电场力方向相同时,根据牛顿第二定律可知
此种情况下,负电荷运动的角速度为
当负电荷所受的洛仑兹力与电场力方向相反时,有
此种情况下,负电荷运动的角速度为
应选A、C。
3. 临界状态不惟一
带电粒子在洛仑兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此穿越磁场的轨迹可能有多种情况。
如图甲所示,A、B为一对平行板,板长为L,两板距离为d,板间区域内充满着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,一个质量为m,带电量为q的带电粒子以初速v0,从A、B两板的中间,沿垂直于磁感线的方向射入磁场。求v0在什么范围内,粒子能从磁场内射出?
解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆周运动,很明显,圆周运动的半径大于某值r1时粒子可以从极板右边穿出,而半径小于某值r2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r的最小值r1以及粒子在左边穿出时r的最大值r2,由几何知识得:
粒子擦着板从右边穿出时,圆心在O点,有:
r12=L2+(r1-d/2)2得r1=,
又由于r1=mv1/Bq得v1=Bqr1/m,∴v>Bqr1/m时粒子能从右边穿出。
粒子擦着上板从左边穿出时,圆心在O'点,有r2=d/4,又由r2=mv2/Bq=d/4得v2=Bqd/4m
∴v2高考题选集
1(10新课标卷)如图所示,在0≤x≤a、o≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内.己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的:
(1)速度大小;
(2)速度方向与y轴正方向夹角正弦。
解析:设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,由牛顿第二定律和洛伦磁力公式,得,解得:
当<R<a时,在磁场中运动时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t,依题意,时,
设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系可得:
再加上,解得:
2(2020全国理综)如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;因此,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求[ ]
(1)粒子a射入区域I时速度的大小;
(2)当a离开区域II时,a、b两粒子的y坐标之差。
解析:(1)设粒子a在I内做匀速圆周运动的圆心为C(在y轴上),半径为Ra1,粒子速率为va,运动轨迹与两磁场区域边界的交点为,如图,由洛仑兹力公式和牛顿第二定律得
① 由几何关系得 ② ③
式中,,由①②③式得 ④
(2)设粒子a在II内做圆周运动的圆心为Oa,半径为,射出点为(图中未画出轨迹),。由洛仑兹力公式和牛顿第二定律得 ⑤
由①⑤式得 ⑥
、和三点共线,且由 ⑥式知点必位于 ⑦ 的平面上。由对称性知,点与点纵坐标相同,即 ⑧ 式中,h是C点的y坐标。
设b在I中运动的轨道半径为,由洛仑兹力公式和牛顿第二定律得 ⑨
设a到达点时,b位于点,转过的角度为。如果b没有飞出I,则
⑩
式中,t是a在区域II中运动的时间,而
由⑤⑨⑩式得
由①③⑨式可见,b没有飞出。点的y坐标为
由①③⑧⑨式及题给条件得,a、b两粒子的y坐标之差为
3(07宁夏卷)在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。
⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。
⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。
设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得:
解得:
⑵设O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。
由几何关系得:
由余弦定理得:
解得:
设入射粒子的速度为v,由 解出:
4(2020年海南物理)如图,ABCD是边长为的正方形。质量为、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC变射入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC边上的任意点入射,都只能从A点射出磁场。不计重力,求:
(1)次匀强磁场区域中磁感应强度的方向和大小;
(2)此匀强磁场区域的最小面积。
解析:(1)设匀强磁场的磁感应强度的大小为B。令圆弧是自C点垂直于BC入射的电子在磁场中的运行轨道。电子所受到的磁场的作用力
应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外。圆弧的圆心在CB边或其延长线上。依题意,圆心在A、C连线的中垂线上,故B 点即为圆心,圆半径为按照牛顿定律有
联立①②式得
(2)由(1)中决定的磁感应强度的方向和大小,可知自点垂直于入射电子在A点沿DA方向射出,且自BC边上其它点垂直于入射的电子的运动轨道只能在BAEC区域中。因而,圆弧是所求的最小磁场区域的一个边界。
为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为(不妨设)的情形。该电子的运动轨迹如右图所示。图中,圆的圆心为O,pq垂直于BC边 ,由③式知,圆弧的半径仍为,在D为原点、DC为x轴,AD为轴的坐标系中,P点的坐标为
这意味着,在范围内,p点形成以D为圆心、为半径的四分之一圆周,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界。
因此,所求的最小匀强磁场区域时分别以和为圆心、为半径的两个四分之一圆周和所围成的,其面积为
5(07全国卷Ⅰ)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示。在y>0,00,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点处有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值。已知速度最大的粒子在0a的区域中运动的时间之比为2︰5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。
解:对于y轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a ;
对于 x轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,由两段圆弧组成,圆心分别是c和c’ 由对称性得到 c’在 x轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足
解得 由数学关系得到:
代入数据得到:
所以在x 轴上的范围是
6(05河北) 如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。不计重力,不计粒子间的相互影响。下列图中阴影部分表示带电粒子可能经过的区域,其中。哪个图是正确的( A )
A. B. C. D.
7[06全国卷II.25]如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。一个带负电的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件?
【解析】:(20分)
粒子在整个过程中的速度大小恒为v,交替地在xy平面内B1与B2磁场区域中做匀速圆周运动,轨迹都是半个圆周。设粒子的质量和电荷量的大小分别为m和q,圆周运动的半径分别为和r2,有
r1= ① r2= ②
现分析粒子运动的轨迹。如图所示,在xy平面内,粒子先沿半径为r1的半圆C1运动至y轴上离O点距离为2 r1的A点,接着沿半径为2 r2的半圆D1运动至y轴的O1点,O1O距离
d=2(r2-r1) ③
此后,粒子每经历一次“回旋”(即从y轴出发沿半径r1的半圆和半径为r2的半圆回到原点下方y轴),粒子y坐标就减小d。
设粒子经过n次回旋后与y轴交于On点。若OOn即nd满足
nd=2r1 ④
则粒子再经过半圆Cn+1就能够经过原点,式中n=1,2,3,……为回旋次数。(nd=2r1 ,d=2(r2-r1) ,(n+1)d=2r2 )
由③④式解得 ⑤
由①②⑤式可得B1、B2应满足的条件
n=1,2,3,…… ⑥
评分参考:①、②式各2分,求得⑤式12分,⑥式4分。解法不同,最后结果的表达式不同,只要正确,同样给分。
【备考提示】:题目考查了带电粒子在匀强磁场中的匀速圆周运动,正确分析带电粒子在磁场中的运动的物理图象,并作出粒子运动轨迹的示意图是解题的关键所在,另外还考查了考生的发散思维能力。
8、正负电子对撞机的最后部分的简化示意图如图11-3-6所示,位于水平面内的粗实线所示的圆环形真空管道是正、负电子做圆周运动的“容器”,经过加速器加速后的正、负电子被分别引入该管道时,具有相等的速率v,它们沿管道向相反的方向运动.在管道内控制它们转弯的是一系列圆形电磁铁,即图中的A1、A2、A3、……An,共n个,均匀布在整个圆环上(图中只示意性地用细实线画了几个,其余的用细虚线表示),
每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下,磁场区域的直径为d.改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确的调整,首先实现电子在环形管道中沿图中粗虚线所示的轨迹运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一条直径的两端,如图(2)所示.这就为进一步实现正、负电子的对撞作好了准备.
(1)试确定正、负电子在管道内各是沿什么方向旋转的?
(2)已知正、负电子的质量都是m,所带电荷都是元电荷e,重力不计.求电磁铁内匀强磁场的磁感应强度B的大小?
【解析】(1)正电子是沿逆时针方向运动,负电子是沿顺时针方向运动.
(2)电子经过1个电磁铁时,偏转角度是θ=2π/n,这一角度也就是电子在小磁铁中圆弧的弧心角,射入电磁铁时与通过射入点的小磁铁的直径的夹角为θ/2;而电子在磁场中的圆周运动的半径R=mv/Be=d/2sin(θ/2),可解得磁
感应强度:B=