(共8张PPT)
第2课时 数轴
B
C
1.下列说法中,正确的是(
A.正数和负数统称为有理数
B.整数和分数统称为有理数
C.正整数和负整数统称为整数
D.分数包括负分数和负小数
2.下列各数是正有理数的是(
)
)
3.一般地,在数学中人们用画图的方式把数“直观化”,
通常用一条直线上的点表示数,这条直线叫做__________.
4.若 A 点是原点左边的点,则 A 点表示的数是____数(填
“正”或“负”).
5.如图 1.
图 1
(1) 数轴上的点 A 、B、C、D 分别表示的数是________ 、
________、________、________;
(2)A、B 两点之间的距离是________个单位长度.
数轴
负
-2
0
2.5
4
2
数轴的概念和画法
1.数轴是(
)
D
A.一条直线
B.一条有原点、正方向的直线
C.一条有长度单位的直线
D.一条规定了原点、正方向和单位长度的直线
2.下列各语句中,错误的是(
)
B
A.数轴上,原点位置的确定是任意的
B.数轴上,正方向可以是从原点向右,也可以是从原点向左
C.数轴上,单位长度 1 的长度的确定,可根据需要任意选取
D.同一数轴上,单位长度必须一致
数轴的画法
3.指出图 2 中所画数轴的错误.
图 2
解:(1)画的不是直线,从而无法找到负数的位置.
(2)没有标明原点与单位长度.
(3)单位长度不一致.
(4)负方向上数字的顺序标示错误.
4.数轴上与表示+1 的点距离是 3 个单位长度的点可以表
示的数是________.
+4或-2
有理数与数轴上点的关系(重点)
)
D
5.在图 3 中的数轴上,表示-2.75 的点是(
图 3
A.E 点
B.F 点
C.G 点
D.H 点
6.在数轴上画出表示下列各数的点:
解:如图 1.
图 1
1.忽略数轴“三要素”导致错误.数轴是一条直线,可以
向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺
一不可.这是判断图形是不是数轴的关键.
2.易误认为“数轴上的点与有理数一一对应”.在数轴的
正半轴和负半轴上都有无数个点,而每一个点都能表示一个数,
不同的点表示的数不同.任何一个有理数都能用数轴上的某个
点来表示,而数轴上的点表示的不都是有理数,即数轴上的点
与有理数并不是一一对应的关系.